Math Problem Statement

Halla las abscisas de los puntos A y B mostrados en la gráfica de la función y = e^(-x/2)·sen(4x).

Solution

The problem involves finding the x-coordinates (xx-values) of points AA and BB in the given graph of the function y=ex/2sin(4x)y = e^{-x/2} \sin(4x). These points correspond to the extrema of the function, where the derivative yy' is zero. The derivative is given as:

y=ddx(ex/2sin(4x)).y' = \frac{\mathrm{d}}{\mathrm{d}x} \left( e^{-x/2} \sin(4x) \right).

Using the product rule:

y=(ddxex/2)sin(4x)+ex/2ddxsin(4x).y' = \left( \frac{\mathrm{d}}{\mathrm{d}x} e^{-x/2} \right) \sin(4x) + e^{-x/2} \frac{\mathrm{d}}{\mathrm{d}x} \sin(4x).

The derivatives are: ddxex/2=12ex/2,ddxsin(4x)=4cos(4x).\frac{\mathrm{d}}{\mathrm{d}x} e^{-x/2} = -\frac{1}{2} e^{-x/2}, \quad \frac{\mathrm{d}}{\mathrm{d}x} \sin(4x) = 4 \cos(4x).

Thus: y=12ex/2sin(4x)+ex/2(4cos(4x)).y' = -\frac{1}{2} e^{-x/2} \sin(4x) + e^{-x/2} (4 \cos(4x)).

Factoring out ex/2e^{-x/2}: y=ex/2(4cos(4x)12sin(4x)).y' = e^{-x/2} \left( 4 \cos(4x) - \frac{1}{2} \sin(4x) \right).

To find the critical points (extrema), solve: 4cos(4x)12sin(4x)=0.4 \cos(4x) - \frac{1}{2} \sin(4x) = 0.

Rearranging: 4cos(4x)=12sin(4x),4 \cos(4x) = \frac{1}{2} \sin(4x),

or: 8cos(4x)=sin(4x).8 \cos(4x) = \sin(4x).

Dividing both sides by cos(4x)\cos(4x) (assuming cos(4x)0\cos(4x) \neq 0): 8=tan(4x).8 = \tan(4x).

This simplifies to: tan(4x)=8.\tan(4x) = 8.

The solutions for 4x4x are: 4x=arctan(8)+nπ,nZ.4x = \arctan(8) + n\pi, \quad n \in \mathbb{Z}.

Dividing by 4 to solve for xx: x=arctan(8)4+nπ4,nZ.x = \frac{\arctan(8)}{4} + \frac{n\pi}{4}, \quad n \in \mathbb{Z}.

Using this equation, substitute nn to find the xx-values corresponding to points AA and BB. Let me calculate approximate values.import numpy as np

Calculate the principal value of arctan(8)

arctan_8 = np.arctan(8)

Define the general solution for x

n_values = np.array([0, 1]) # To calculate the first two solutions (points A and B) x_values = (arctan_8 / 4) + (n_values * np.pi / 4)

x_valuesarray([0.36161033, 1.1470085 ])array([0.36161033, 1.1470085 ])successThe approximate xx-coordinates for the points AA and BB are:

  • Point AA: x0.362x \approx 0.362
  • Point BB: x1.147x \approx 1.147

These values correspond to the extrema of the function y=ex/2sin(4x)y = e^{-x/2} \sin(4x).

Would you like me to provide further steps or verification details? Here are some related questions to explore further:

  1. What are the corresponding yy-values for points AA and BB?
  2. How does damping influence the behavior of this function over time?
  3. Can you graph the derivative to visually confirm these extrema?
  4. What happens to the function as xx \to \infty?
  5. How do we compute higher-order extrema for this function?

Tip: Always verify extrema by checking the sign change of the derivative yy' around the critical points.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Oscillation
Critical Points
Derivative Analysis
Trigonometric Functions
Exponential Decay

Formulas

y = e^(-x/2)·sen(4x)
y' = -1/2·e^(-x/2)·sen(4x) + e^(-x/2)·4·cos(4x)
4·cos(4x) - 1/2·sen(4x) = 0
tan(4x) = 8

Theorems

Trigonometric Derivatives
Critical Point Analysis (y' = 0)
Behavior of Exponential Functions

Suitable Grade Level

Grade 11-12 or Introductory College Calculus