Math Problem Statement

A cosine curve has an amplitude of 3 units and a period of 3π radians. The equation of the axis is y = 2, and a horizontal shift of π/4 radians to the left has been applied. Write the equation of this function. Determine the value of the function in question 1 if x = π/2, 3π/4, and 11π/6.

Solution

Let's solve the given problems step by step.


1. Equation of the cosine function

  • Amplitude = 3
  • Period = 3π3\pi, so the angular frequency bb is: b=2πPeriod=2π3π=23b = \frac{2\pi}{\text{Period}} = \frac{2\pi}{3\pi} = \frac{2}{3}
  • The axis is y=2y = 2, which is the vertical shift.
  • The function is shifted π4\frac{\pi}{4} radians to the left, which is represented by x+π4x + \frac{\pi}{4}.

The general form of a cosine function is: y=Acos(b(xh))+ky = A \cos\left(b(x - h)\right) + k

Substituting the given values: y=3cos(23(x+π4))+2y = 3 \cos\left(\frac{2}{3}\left(x + \frac{\pi}{4}\right)\right) + 2

This is the equation of the cosine function.


2. Values of the function for specific xx values

Substituting x=π2x = \frac{\pi}{2}:

y=3cos(23(π2+π4))+2y = 3 \cos\left(\frac{2}{3}\left(\frac{\pi}{2} + \frac{\pi}{4}\right)\right) + 2 Simplify inside the cosine: π2+π4=2π4+π4=3π4\frac{\pi}{2} + \frac{\pi}{4} = \frac{2\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{4} y=3cos(233π4)+2y = 3 \cos\left(\frac{2}{3} \cdot \frac{3\pi}{4}\right) + 2 Simplify further: 233π4=6π12=π2\frac{2}{3} \cdot \frac{3\pi}{4} = \frac{6\pi}{12} = \frac{\pi}{2} y=3cos(π2)+2y = 3 \cos\left(\frac{\pi}{2}\right) + 2 Since cos(π2)=0\cos\left(\frac{\pi}{2}\right) = 0: y=3(0)+2=2y = 3(0) + 2 = 2


Substituting x=3π4x = \frac{3\pi}{4}:

y=3cos(23(3π4+π4))+2y = 3 \cos\left(\frac{2}{3}\left(\frac{3\pi}{4} + \frac{\pi}{4}\right)\right) + 2 Simplify inside the cosine: 3π4+π4=4π4=π\frac{3\pi}{4} + \frac{\pi}{4} = \frac{4\pi}{4} = \pi y=3cos(23π)+2y = 3 \cos\left(\frac{2}{3} \cdot \pi\right) + 2 Simplify further: 23π=2π3\frac{2}{3} \cdot \pi = \frac{2\pi}{3} y=3cos(2π3)+2y = 3 \cos\left(\frac{2\pi}{3}\right) + 2 Since cos(2π3)=12\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}: y=3(12)+2=32+2=12y = 3\left(-\frac{1}{2}\right) + 2 = -\frac{3}{2} + 2 = \frac{1}{2}


Substituting x=11π6x = \frac{11\pi}{6}:

y=3cos(23(11π6+π4))+2y = 3 \cos\left(\frac{2}{3}\left(\frac{11\pi}{6} + \frac{\pi}{4}\right)\right) + 2 Simplify inside the cosine: 11π6+π4=22π12+3π12=25π12\frac{11\pi}{6} + \frac{\pi}{4} = \frac{22\pi}{12} + \frac{3\pi}{12} = \frac{25\pi}{12} y=3cos(2325π12)+2y = 3 \cos\left(\frac{2}{3} \cdot \frac{25\pi}{12}\right) + 2 Simplify further: 2325π12=50π36=25π18\frac{2}{3} \cdot \frac{25\pi}{12} = \frac{50\pi}{36} = \frac{25\pi}{18} So: y=3cos(25π18)+2y = 3 \cos\left(\frac{25\pi}{18}\right) + 2 This requires approximation: cos(25π18)0.866\cos\left(\frac{25\pi}{18}\right) \approx -0.866 y=3(0.866)+22.598+2=0.598y = 3(-0.866) + 2 \approx -2.598 + 2 = -0.598


Final Results:

  1. Equation: y=3cos(23(x+π4))+2y = 3 \cos\left(\frac{2}{3}\left(x + \frac{\pi}{4}\right)\right) + 2
  2. Values:
    • x=π2x = \frac{\pi}{2}: y=2y = 2
    • x=3π4x = \frac{3\pi}{4}: y=12y = \frac{1}{2}
    • x=11π6x = \frac{11\pi}{6}: y0.598y \approx -0.598

Do you want more details or have further questions? Here are 5 related queries:

  1. What is the difference between amplitude and vertical shift in trigonometric functions?
  2. How do horizontal shifts affect the phase of a cosine or sine function?
  3. What is the importance of the period in a trigonometric function?
  4. How would the function change if the amplitude were halved?
  5. Can we solve the values using an alternate method, like a unit circle?

Tip: Always double-check angles and simplifications when substituting values into trigonometric functions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cosine Function
Phase Shift
Amplitude
Period

Formulas

y = A cos(b(x - h)) + k
Angular frequency b = 2π / Period
cos(x + h) transformations

Theorems

Cosine periodicity
Trigonometric simplifications

Suitable Grade Level

Grades 10-12