Math Problem Statement

Sebuah titik A(-2,6) dan B(-3,5) ditranslasi oleh T(2, -3), dilanjutkan refleksi oleh garis y = -x. Kemudian hasilnya dirotasi sejauh 90° searah jarum jam. Bayangan titik A dan B berturut-turut adalah?

Solution

Let's break down the problem and solve it step by step.

We have two points:

  • A(2,6)A(-2, 6)
  • B(3,5)B(-3, 5)

The transformations that will be applied are as follows:

  1. Translation by vector T(23)T\left( \frac{2}{3} \right), meaning we add 2 to the x-coordinates and subtract 3 from the y-coordinates of both points.

    For point A(2,6)A(-2, 6): A=(2+2,63)=(0,3)A' = (-2 + 2, 6 - 3) = (0, 3)

    For point B(3,5)B(-3, 5): B=(3+2,53)=(1,2)B' = (-3 + 2, 5 - 3) = (-1, 2)

  2. Reflection over the line y=xy = -x. To reflect a point over this line, we switch the coordinates and change their signs. In other words, the reflection of a point (x,y)(x, y) over the line y=xy = -x is (y,x)(-y, -x).

    For point A(0,3)A'(0, 3): A=(3,0)A'' = (-3, 0)

    For point B(1,2)B'(-1, 2): B=(2,1)B'' = (-2, 1)

  3. Rotation by 90° clockwise. A 90° clockwise rotation transforms a point (x,y)(x, y) into (y,x)(y, -x).

    For point A(3,0)A''(-3, 0): A=(0,3)A''' = (0, 3)

    For point B(2,1)B''(-2, 1): B=(1,2)B''' = (1, 2)

So, after performing all the transformations, the final coordinates of AA and BB are:

  • A(0,3)A(0, 3)
  • B(1,2)B(1, 2)

Thus, the correct answer is D.


Let me know if you'd like further clarifications or details on any of the steps!

Related Questions:

  1. How do you find the result of a 180° rotation?
  2. What is the general formula for reflecting a point over a vertical or horizontal line?
  3. How do we rotate points by angles other than 90°?
  4. What are the properties of translations in coordinate geometry?
  5. How do you reflect a point over an arbitrary line (not axes or y=xy = -x)?

Tip: To reflect a point over the line y=xy = x, simply switch the coordinates (x,y)(y,x)(x, y) \to (y, x).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Translation
Reflection
Rotation

Formulas

Translation: T(x, y) -> (x + dx, y + dy)
Reflection over y = -x: (x, y) -> (-y, -x)
90° Clockwise Rotation: (x, y) -> (y, -x)

Theorems

Transformation Geometry
Coordinate Geometry

Suitable Grade Level

Grades 9-11