Math Problem Statement

Complete rotations of points about the origin, given specific transformations in the image.

Solution

The worksheet is focused on applying rotations of points on the coordinate plane about the origin. Let's go through each transformation step-by-step, completing any missing coordinates:


1) Rotation 180° about the origin

For rotation 180°: (x,y)(x,y)(x, y) \rightarrow (-x, -y)

  • S(1,3)S=(1,3)S(-1, -3) \rightarrow S' = (1, 3)
  • T(3,0)T=(3,0)T(3, 0) \rightarrow T' = (-3, 0)
  • U(2,5)U=(2,5)U(2, 5) \rightarrow U' = (-2, -5)

Coordinates:

  • S(1,3)S'(1, 3), T(3,0)T'(-3, 0), U(2,5)U'(-2, -5)

2) Rotation 90° counterclockwise about the origin

For 90° counterclockwise: (x,y)(y,x)(x, y) \rightarrow (-y, x)

  • W(3,2)W=(2,3)W(3, -2) \rightarrow W' = (2, 3)
  • X(2,1)X=(1,2)X(-2, -1) \rightarrow X' = (1, -2)
  • Y(2,3)Y=(3,2)Y(2, -3) \rightarrow Y' = (3, 2)

Coordinates:

  • W(2,3)W'(2, 3), X(1,2)X'(1, -2), Y(3,2)Y'(3, 2)

3) Rotation 180° about the origin

For rotation 180°: (x,y)(x,y)(x, y) \rightarrow (-x, -y)

  • L(3,5)L=(3,5)L(-3, -5) \rightarrow L' = (3, 5)
  • K(4,1)K=(4,1)K(-4, -1) \rightarrow K' = (4, 1)
  • J(0,2)J=(0,2)J(0, -2) \rightarrow J' = (0, 2)

Coordinates:

  • L(3,5)L'(3, 5), K(4,1)K'(4, 1), J(0,2)J'(0, 2)

4) Rotation 90° clockwise about the origin

For 90° clockwise: (x,y)(y,x)(x, y) \rightarrow (y, -x)

  • K(4,5)K=(5,4)K(4, -5) \rightarrow K' = (-5, -4)
  • J(5,3)J=(3,5)J(5, -3) \rightarrow J' = (-3, -5)
  • I(5,5)I=(5,5)I(5, -5) \rightarrow I' = (-5, -5)

Coordinates:

  • K(5,4)K'(-5, -4), J(3,5)J'(-3, -5), I(5,5)I'(-5, -5)

5) Rotation 180° about the origin

For rotation 180°: (x,y)(x,y)(x, y) \rightarrow (-x, -y)

  • J(1,2)J=(1,2)J(1, -2) \rightarrow J' = (-1, 2)
  • I(1,2)I=(1,2)I(1, 2) \rightarrow I' = (-1, -2)
  • H(3,3)H=(3,3)H(3, -3) \rightarrow H' = (-3, 3)

Coordinates:

  • J(1,2)J'(-1, 2), I(1,2)I'(-1, -2), H(3,3)H'(-3, 3)

6) Rotation 90° counterclockwise about the origin

For 90° counterclockwise: (x,y)(y,x)(x, y) \rightarrow (-y, x)

  • H(5,2)H=(2,5)H(-5, -2) \rightarrow H' = (2, -5)
  • G(3,0)G=(0,3)G(-3, 0) \rightarrow G' = (0, -3)
  • F(0,4)F=(4,0)F(0, -4) \rightarrow F' = (4, 0)

Coordinates:

  • H(2,5)H'(2, -5), G(0,3)G'(0, -3), F(4,0)F'(4, 0)

Do you want further clarification on any of these steps?
Here are five related questions to help you practice:

  1. What is the rule for rotating a point 270° counterclockwise about the origin?
  2. How do you determine the center of rotation in a transformation?
  3. If a point lies on the origin, how does it behave under any rotation?
  4. What is the effect of multiple consecutive rotations (e.g., two 90° clockwise rotations)?
  5. Can the same rules be applied for rotations about a different center?

Tip: Always plot the original and rotated points on the grid to double-check your work!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Transformations
Rotations

Formulas

180° Rotation: (x, y) → (-x, -y)
90° Counterclockwise Rotation: (x, y) → (-y, x)
90° Clockwise Rotation: (x, y) → (y, -x)

Theorems

Rotation Theorems

Suitable Grade Level

Grade 8-10