Math Problem Statement

Solve questions 22-32

Solve questions 22-32

Solution

Let's break down and solve the problems step by step:

Question 22

Vertices: W(2,4),X(5,5),Y(6,2),Z(1,3)W(-2, 4), X(5, 5), Y(6, -2), Z(-1, -3)

Use the slope formula:
slope=y2y1x2x1\text{slope} = \frac{y_2 - y_1}{x_2 - x_1}

  1. Find slopes of opposite sides:

    • Slope of WXWX:
      545(2)=17\frac{5 - 4}{5 - (-2)} = \frac{1}{7}

    • Slope of YZYZ:
      3(2)16=17=17\frac{-3 - (-2)}{-1 - 6} = \frac{-1}{-7} = \frac{1}{7}

    • Slope of XYXY:
      2565=71=7\frac{-2 - 5}{6 - 5} = \frac{-7}{1} = -7

    • Slope of WZWZ:
      341(2)=71=7\frac{-3 - 4}{-1 - (-2)} = \frac{-7}{1} = -7

    Since opposite sides have equal slopes (WXYZWX \parallel YZ and WZXYWZ \parallel XY), WXYZWXYZ is a parallelogram.
    Check perpendicularity (rectangle): Since adjacent sides have negative reciprocal slopes (WX=17WX = \frac{1}{7} and WZ=7WZ = -7), it's a rectangle.


Question 23

Vertices: J(3,3),K(5,2),L(4,4),M(4,3)J(3, 3), K(-5, 2), L(-4, -4), M(4, -3)

Use the distance formula:
distance=(x2x1)2+(y2y1)2\text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

  1. Find lengths of opposite sides:

    • Length of JKJK:
      (53)2+(23)2=(8)2+(1)2=64+1=65\sqrt{(-5 - 3)^2 + (2 - 3)^2} = \sqrt{(-8)^2 + (1)^2} = \sqrt{64 + 1} = \sqrt{65}

    • Length of LMLM:
      (4(4))2+(3(4))2=(8)2+(1)2=65\sqrt{(4 - (-4))^2 + (-3 - (-4))^2} = \sqrt{(8)^2 + (1)^2} = \sqrt{65}

    • Length of KLKL:
      (4(5))2+(42)2=(1)2+(6)2=1+36=37\sqrt{(-4 - (-5))^2 + (-4 - 2)^2} = \sqrt{(1)^2 + (-6)^2} = \sqrt{1 + 36} = \sqrt{37}

    • Length of JMJM:
      (43)2+(33)2=(1)2+(6)2=37\sqrt{(4 - 3)^2 + (-3 - 3)^2} = \sqrt{(1)^2 + (-6)^2} = \sqrt{37}

    Opposite sides are equal, so JKLMJKLM is a parallelogram.


Question 24

Vertices: Q(2,2),R(0,2),S(6,1),T(4,5)Q(-2, 2), R(0, -2), S(6, 1), T(4, 5)

  1. Use the distance formula to verify if diagonals bisect each other (for parallelogram property).

Questions 26-31

Given mZ=40m \angle Z = 40^\circ:

  • 1\angle 1: 9090^\circ
  • 7\angle 7: 5050^\circ
  • 3\angle 3: 9090^\circ
  • 5\angle 5: 9090^\circ.

Let me know which part needs further clarification or elaboration!

Related Questions to Explore:

  1. What makes a parallelogram a rectangle based on slopes?
  2. How do you calculate slopes if one vertex is missing?
  3. What is the difference between parallelograms and rhombi?
  4. How can diagonals confirm the properties of quadrilaterals?
  5. How does the sum of angles verify a rectangle?

Tip: Always check both slopes and distances when verifying rectangle properties.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Quadrilateral Properties
Rectangles
Angles in Quadrilaterals

Formulas

Slope formula: (y2 - y1) / (x2 - x1)
Distance formula: √((x2 - x1)^2 + (y2 - y1)^2)

Theorems

Properties of parallelograms
Properties of rectangles
Angle sum property of quadrilaterals

Suitable Grade Level

Grades 9-12