Math Problem Statement

0.41666666666 as a fracton

Solution

To convert the decimal 0.41666666666 into a fraction:

  1. Recognize the repeating decimal: 0.416666666660.41666666666\ldots (where 66 repeats).
  2. Let x=0.41666666666x = 0.41666666666\ldots.
  3. Multiply both sides by 10 to shift the decimal point: 10x=4.166666666610x = 4.1666666666\ldots
  4. Subtract xx from 10x10x: 10xx=4.16666666660.416666666610x - x = 4.1666666666\ldots - 0.4166666666\ldots 9x=3.759x = 3.75
  5. Solve for xx: x=3.759=3751000=512x = \frac{3.75}{9} = \frac{375}{1000} = \frac{5}{12}

Thus, 0.41666666666=5120.41666666666\ldots = \frac{5}{12}.

Would you like a more detailed breakdown or have any questions?

Here are 5 related questions for practice:

  1. Convert 0.33330.3333\ldots into a fraction.
  2. Express 0.7272720.727272\ldots as a fraction.
  3. How do you convert a terminating decimal into a fraction?
  4. What is the fraction representation of 0.83330.8333\ldots?
  5. Simplify 2472\frac{24}{72}.

Tip: Repeating decimals can always be written as fractions by using algebraic manipulation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Decimals
Fractions
Repeating Decimals

Formulas

Convert repeating decimals to fractions: Let x = repeating decimal, multiply by powers of 10, subtract to eliminate repeating part

Theorems

Algebraic manipulation of repeating decimals

Suitable Grade Level

Grades 6-8