Math Problem Statement

A point is graphed in polar form. Find its rectangular coordinates. Given: r = 2, θ = 5π/6

Solution

To convert polar coordinates (r,θ)(r, \theta) into rectangular coordinates (x,y)(x, y), the formulas are:

x=rcos(θ)x = r \cdot \cos(\theta) y=rsin(θ)y = r \cdot \sin(\theta)

From the image:

  • r=2r = 2
  • θ=5π6\theta = \frac{5\pi}{6}

Step-by-step Solution:

  1. Calculate xx: x=rcos(5π6)=2cos(5π6)x = r \cdot \cos\left(\frac{5\pi}{6}\right) = 2 \cdot \cos\left(\frac{5\pi}{6}\right) cos(5π6)=cos(π6)=32\cos\left(\frac{5\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2} x=2(32)=3x = 2 \cdot \left(-\frac{\sqrt{3}}{2}\right) = -\sqrt{3}

  2. Calculate yy: y=rsin(5π6)=2sin(5π6)y = r \cdot \sin\left(\frac{5\pi}{6}\right) = 2 \cdot \sin\left(\frac{5\pi}{6}\right) sin(5π6)=sin(π6)=12\sin\left(\frac{5\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} y=212=1y = 2 \cdot \frac{1}{2} = 1

Final Rectangular Coordinates:

(x,y)=(3,1)(x, y) = \left(-\sqrt{3}, 1\right)

Would you like further clarifications or details on how polar-to-rectangular conversions work?


Five related questions:

  1. What are polar coordinates, and how do they differ from rectangular coordinates?
  2. How do we determine the quadrant of the rectangular coordinates from the polar angle?
  3. What is the geometric interpretation of the conversion formulas?
  4. Can we go from rectangular to polar coordinates? If so, how?
  5. How do trigonometric identities help in simplifying conversions?

Tip: Always remember the unit circle values for common angles (like π/6,π/4,π/3\pi/6, \pi/4, \pi/3) for quick computations in conversions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Rectangular Coordinates
Trigonometry

Formulas

x = r * cos(θ)
y = r * sin(θ)

Theorems

Trigonometric Functions of Angles on the Unit Circle

Suitable Grade Level

Grades 10-12