Math Problem Statement

Complex numbers in polar form \( \sqrt{2} e^{-j \pi/4}, \sqrt{2} e^{-j 9\pi/4}, \sqrt{2} e^{j 9\pi/4}, \sqrt{2} e^{j \pi/4}, e^{j 5\pi/2}, e^{-j \pi/2}, e^{j \pi/2}, \frac{1}{2} e^{-j \pi}, \frac{1}{2} e^{j \pi} \) need to be converted to the rectangular form \( x + jy \).

Solution

The question requires converting a set of complex numbers into the rectangular form x+jyx + jy, where jj represents the imaginary unit.

Let's analyze the given complex numbers:

  1. 2ejπ/4\sqrt{2} e^{-j \pi/4}
  2. 2ej9π/4\sqrt{2} e^{-j 9\pi/4}
  3. 2ej9π/4\sqrt{2} e^{j 9\pi/4}
  4. 2ejπ/4\sqrt{2} e^{j \pi/4}
  5. ej5π/2e^{j 5\pi/2}
  6. ejπ/2e^{-j \pi/2}
  7. ejπ/2e^{j \pi/2}
  8. 12ejπ\frac{1}{2} e^{-j \pi}
  9. 12ejπ\frac{1}{2} e^{j \pi}

To convert each complex number from polar form rejθre^{j\theta} to rectangular form x+jyx + jy, we use:

x=rcos(θ)x = r \cos(\theta) y=rsin(θ)y = r \sin(\theta)

Now, let’s calculate each value:

  1. 2ejπ/4\sqrt{2} e^{-j \pi/4}:

    • r=2r = \sqrt{2}, θ=π/4\theta = -\pi/4
    • x=2cos(π/4)=222=1x = \sqrt{2} \cos(-\pi/4) = \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 1
    • y=2sin(π/4)=2(22)=1y = \sqrt{2} \sin(-\pi/4) = \sqrt{2} \cdot \left(-\frac{\sqrt{2}}{2}\right) = -1
    • Result: 1j1 - j
  2. 2ej9π/4\sqrt{2} e^{-j 9\pi/4}:

    • r=2r = \sqrt{2}, θ=9π/4\theta = -9\pi/4 (Equivalent to π/4-\pi/4 because angles are periodic with 2π2\pi)
    • Result: 1j1 - j (same as above)
  3. 2ej9π/4\sqrt{2} e^{j 9\pi/4}:

    • r=2r = \sqrt{2}, θ=9π/4\theta = 9\pi/4 (Equivalent to π/4\pi/4)
    • Result: 1+j1 + j
  4. 2ejπ/4\sqrt{2} e^{j \pi/4}:

    • r=2r = \sqrt{2}, θ=π/4\theta = \pi/4
    • Result: 1+j1 + j
  5. ej5π/2e^{j 5\pi/2}:

    • r=1r = 1, θ=5π/2\theta = 5\pi/2 (Equivalent to π/2\pi/2)
    • Result: 0+j0 + j
  6. ejπ/2e^{-j \pi/2}:

    • r=1r = 1, θ=π/2\theta = -\pi/2
    • Result: 0j0 - j
  7. ejπ/2e^{j \pi/2}:

    • r=1r = 1, θ=π/2\theta = \pi/2
    • Result: 0+j0 + j
  8. 12ejπ\frac{1}{2} e^{-j \pi}:

    • r=12r = \frac{1}{2}, θ=π\theta = -\pi
    • x=12cos(π)=12(1)=12x = \frac{1}{2} \cos(-\pi) = \frac{1}{2} \cdot (-1) = -\frac{1}{2}
    • y=12sin(π)=0y = \frac{1}{2} \sin(-\pi) = 0
    • Result: 12-\frac{1}{2}
  9. 12ejπ\frac{1}{2} e^{j \pi}:

    • r=12r = \frac{1}{2}, θ=π\theta = \pi
    • Result: 12-\frac{1}{2}

Let me know if you need further details or have any questions. Here are some related questions that might expand on this topic:

  1. How is the polar form of a complex number different from its rectangular form?
  2. What is the significance of the argument (angle) in polar form?
  3. How can we convert rectangular form back to polar form?
  4. Why are complex numbers often represented in polar form for certain calculations?
  5. What are the real-world applications of using complex numbers in different forms?

Tip: Remember that angles in polar form can often be simplified by adding or subtracting multiples of 2π2\pi, as they represent the same direction on the complex plane.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar to Rectangular Conversion
Trigonometry

Formulas

x = r \cos(\theta)
y = r \sin(\theta)

Theorems

Euler's Formula

Suitable Grade Level

College level