Math Problem Statement

Geben Sie die folgende Zahl in kartesischen Koordinaten, also in der Form z = x + iy, mit x, y ∈ ℝ, an und skizzieren diese Zahl in der komplexen Zahlenebene, \(\frac{3}{2} \cdot e^{i \cdot \frac{3}{2} \pi}\).

Solution

To convert the given complex number from polar to Cartesian coordinates, let's analyze it step by step.

Problem Statement

We are given: 32ei32π\frac{3}{2} \cdot e^{i \cdot \frac{3}{2} \pi} and asked to express it in the form z=x+iyz = x + iy, where x,yRx, y \in \mathbb{R}.

Step 1: Analyzing the Exponential Form

The expression eiθe^{i \theta} in polar form represents a complex number on the unit circle, with an angle θ\theta measured from the positive real axis.

Here, we have: θ=32π\theta = \frac{3}{2} \pi

Step 2: Finding Cartesian Coordinates

The polar form reiθr \cdot e^{i \theta} can be expanded using Euler's formula: reiθ=r(cosθ+isinθ)r \cdot e^{i \theta} = r (\cos \theta + i \sin \theta)

In our case:

  • r=32r = \frac{3}{2}
  • θ=32π\theta = \frac{3}{2} \pi

So, 32ei32π=32(cos32π+isin32π)\frac{3}{2} \cdot e^{i \cdot \frac{3}{2} \pi} = \frac{3}{2} \left( \cos \frac{3}{2} \pi + i \sin \frac{3}{2} \pi \right)

Step 3: Evaluating Trigonometric Components

  1. Cosine: cos32π=0\cos \frac{3}{2} \pi = 0 (since 32π\frac{3}{2} \pi points along the negative imaginary axis).
  2. Sine: sin32π=1\sin \frac{3}{2} \pi = -1

Thus: 32(0+i(1))=032i\frac{3}{2} \cdot \left( 0 + i \cdot (-1) \right) = 0 - \frac{3}{2} i

Final Answer

The complex number in Cartesian coordinates is: 032i0 - \frac{3}{2} i or simply: 0+(32)i0 + \left( -\frac{3}{2} \right) i

This means x=0x = 0 and y=32y = -\frac{3}{2}.

Would you like to see a graphical representation or have further clarification on any step?


Here are 5 additional related questions for further practice:

  1. How would you represent 2eiπ2 \cdot e^{i \pi} in Cartesian form?
  2. What are the Cartesian coordinates of eiπ2e^{i \frac{\pi}{2}}?
  3. If you multiply two complex numbers in polar form, what happens to their magnitudes and angles?
  4. How would you convert 1+i1 + i into polar form?
  5. What is the significance of the angle θ=π\theta = \pi in complex numbers?

Tip: When working with angles in radians, remember that π\pi represents a half-turn or 180 degrees, which can help visualize points on the complex plane.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar to Cartesian Conversion
Euler's Formula

Formulas

r \cdot e^{i \theta} = r (\cos \theta + i \sin \theta)
e^{i \theta} = \cos \theta + i \sin \theta

Theorems

Euler's Formula

Suitable Grade Level

Undergraduate - Basic Complex Numbers Course