Math Problem Statement

Use de Moivre's Theorem to write each of the following in rectangular form: 3(cos(π/6) - i*sin(π/6))^5

Solution

We are asked to use De Moivre's Theorem to express the given complex number in rectangular form.

The complex number provided is: 3(cosπ6isinπ6)53\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^5

Step 1: Apply De Moivre’s Theorem

De Moivre's Theorem states that for a complex number z=r(cosθ+isinθ)z = r(\cos\theta + i\sin\theta), raised to the power nn, we have: zn=rn(cos(nθ)+isin(nθ))z^n = r^n\left(\cos(n\theta) + i\sin(n\theta)\right)

Here, r=3r = 3, θ=π6\theta = -\frac{\pi}{6}, and n=5n = 5.

Step 2: Calculate the modulus and argument

First, calculate the modulus r5r^5: r5=35=243r^5 = 3^5 = 243

Now, calculate the argument 5θ5\theta: 5θ=5×(π6)=5π65\theta = 5 \times \left(-\frac{\pi}{6}\right) = -\frac{5\pi}{6}

Step 3: Use De Moivre's Theorem

We now have: z5=243(cos(5π6)+isin(5π6))z^5 = 243\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right)

Step 4: Evaluate trigonometric functions

cos(5π6)=cos(5π6)=32\cos\left(-\frac{5\pi}{6}\right) = -\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} sin(5π6)=sin(5π6)=12\sin\left(-\frac{5\pi}{6}\right) = -\sin\left(\frac{5\pi}{6}\right) = -\frac{1}{2}

Step 5: Write the expression in rectangular form

Now substitute these values into the expression: z5=243(32i12)z^5 = 243\left(-\frac{\sqrt{3}}{2} - i\frac{1}{2}\right)

Distribute the 243: z5=243×(32)243×(i12)z^5 = 243 \times \left(-\frac{\sqrt{3}}{2}\right) - 243 \times \left(i\frac{1}{2}\right) z5=24332i2432z^5 = -\frac{243\sqrt{3}}{2} - i\frac{243}{2}

Thus, the rectangular form of the complex number is: z5=24332i2432z^5 = -\frac{243\sqrt{3}}{2} - i\frac{243}{2}

Let me know if you want more details or if you have any questions! Here are some related questions for practice:

  1. What is the polar form of z=2+2iz = 2 + 2i?
  2. How does De Moivre's Theorem relate to Euler's formula?
  3. What are the real and imaginary parts of z5=1+iz^5 = 1 + i?
  4. How do you convert from rectangular to polar form?
  5. What happens to the magnitude of a complex number when raised to a power?

Tip: Always simplify trigonometric functions at key angles like π6\frac{\pi}{6}, π4\frac{\pi}{4}, etc., as they frequently appear in polar coordinates.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Trigonometry
Exponential Form of Complex Numbers

Formulas

De Moivre's Theorem: (r*(cosθ + i*sinθ))^n = r^n*(cos(nθ) + i*sin(nθ))
Euler's Formula: e^(iθ) = cosθ + i*sinθ

Theorems

De Moivre's Theorem

Suitable Grade Level

Grades 11-12