Math Problem Statement

Answers

Complete the table by converting between degrees and radians.

Solution

To complete this table by converting between degrees and radians, we use the following relationship:

Radians=Degrees×π180\text{Radians} = \text{Degrees} \times \frac{\pi}{180^\circ}

and

Degrees=Radians×180π\text{Degrees} = \text{Radians} \times \frac{180^\circ}{\pi}

Let's solve each entry accordingly:

Step-by-Step Solutions:

  1. 600° to Radians: 600×π180=600π180=10π3600^\circ \times \frac{\pi}{180^\circ} = \frac{600 \pi}{180} = \frac{10 \pi}{3} So, 600600^\circ in radians is 10π3\frac{10 \pi}{3}.

  2. Convert 1900-1900^\circ to Radians: 1900×π180=1900π180=95π9-1900^\circ \times \frac{\pi}{180^\circ} = \frac{-1900 \pi}{180} = -\frac{95 \pi}{9} So, 1900-1900^\circ in radians is 95π9-\frac{95 \pi}{9}.

  3. Convert 7π3\frac{7 \pi}{3} to Degrees: 7π3×180π=7×1803=420\frac{7 \pi}{3} \times \frac{180^\circ}{\pi} = \frac{7 \times 180^\circ}{3} = 420^\circ So, 7π3\frac{7 \pi}{3} in degrees is 420420^\circ.

  4. Convert 10401040^\circ to Radians: 1040×π180=1040π180=52π91040^\circ \times \frac{\pi}{180^\circ} = \frac{1040 \pi}{180} = \frac{52 \pi}{9} So, 10401040^\circ in radians is 52π9\frac{52 \pi}{9}.

  5. Convert 6π5\frac{6 \pi}{5} to Degrees: 6π5×180π=6×1805=216\frac{6 \pi}{5} \times \frac{180^\circ}{\pi} = \frac{6 \times 180^\circ}{5} = 216^\circ So, 6π5\frac{6 \pi}{5} in degrees is 216216^\circ.

  6. Convert 972972^\circ to Radians: 972×π180=972π180=27π5972^\circ \times \frac{\pi}{180^\circ} = \frac{972 \pi}{180} = \frac{27 \pi}{5} So, 972972^\circ in radians is 27π5\frac{27 \pi}{5}.

  7. Convert 11π2\frac{11 \pi}{2} to Degrees: 11π2×180π=11×1802=990\frac{11 \pi}{2} \times \frac{180^\circ}{\pi} = \frac{11 \times 180^\circ}{2} = 990^\circ So, 11π2\frac{11 \pi}{2} in degrees is 990990^\circ.

Completed Table:

Degree MeasureRadian Measure
600°10π3\frac{10 \pi}{3}
-1900°95π9-\frac{95 \pi}{9}
420°7π3\frac{7 \pi}{3}
1040°52π9\frac{52 \pi}{9}
216°6π5\frac{6 \pi}{5}
972°27π5\frac{27 \pi}{5}
990°11π2\frac{11 \pi}{2}

Would you like more details on any specific conversions, or have any questions?


Further Related Questions:

  1. How do you convert between radians and degrees for negative angles?
  2. What is the significance of using π\pi in radian measurements?
  3. How would you convert radians to degrees for non-standard angles (e.g., π7\frac{\pi}{7})?
  4. What is the smallest positive angle that is coterminal with 600600^\circ?
  5. How does understanding radians help in trigonometric functions?

Tip:

Always simplify fractions in radian conversions to ensure your answers are in the simplest form possible.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Angle Conversion
Degrees and Radians

Formulas

Radians = Degrees × π / 180
Degrees = Radians × 180 / π

Theorems

Angle Measure Conversion

Suitable Grade Level

Grades 9-12