Math Problem Statement

Here are the red blood cell counts (in 106 cells per microliter) of a healthy person measured on each of 15 days. 5.4 5.1 5.0 5.2 5.6 5.3 5.5 5.3 5.2 5.2 5.4 4.8 5.3 5.1 5.3 A button hyperlink to the SALT program that reads: Use SALT. Find a 95% confidence interval estimate of πœ‡, the true mean red blood cell count (in 106 cells per microliter) for this person during the period of testing. (Round your answers to three decimal places.)

Solution

To find the 95% confidence interval estimate of the true mean red blood cell count (ΞΌ\mu), we will use the formula:

CI=xΛ‰Β±tβˆ—β‹…snCI = \bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}}

Where:

  • xΛ‰\bar{x}: sample mean
  • tβˆ—t^*: critical value for the 95% confidence level (depends on degrees of freedom, df=nβˆ’1df = n-1)
  • ss: sample standard deviation
  • nn: sample size

Step-by-Step Calculation:

  1. Sample Data:
    5.4,5.1,5.0,5.2,5.6,5.3,5.5,5.3,5.2,5.2,5.4,4.8,5.3,5.1,5.35.4, 5.1, 5.0, 5.2, 5.6, 5.3, 5.5, 5.3, 5.2, 5.2, 5.4, 4.8, 5.3, 5.1, 5.3

  2. Calculate Sample Mean (xˉ\bar{x}):
    xΛ‰=Sum of all data pointsn\bar{x} = \frac{\text{Sum of all data points}}{n}

  3. Calculate Sample Standard Deviation (ss):
    s=βˆ‘(xiβˆ’xΛ‰)2nβˆ’1s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}

  4. Determine Critical Value (tβˆ—t^*):
    For a 95% confidence level with nβˆ’1=15βˆ’1=14n - 1 = 15 - 1 = 14 degrees of freedom, use a tt-table or calculator.

  5. Plug Values into the Confidence Interval Formula: CI=xΛ‰Β±tβˆ—β‹…snCI = \bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}}

Let me calculate these from scipy.stats import t

Data

data = np.array([5.4, 5.1, 5.0, 5.2, 5.6, 5.3, 5.5, 5.3, 5.2, 5.2, 5.4, 4.8, 5.3, 5.1, 5.3])

Sample size

n = len(data)

Sample mean

mean = np.mean(data)

Sample standard deviation

std_dev = np.std(data, ddof=1) # Use ddof=1 for sample standard deviation

Degrees of freedom

df = n - 1

Critical value (t* for 95% confidence interval)

t_critical = t.ppf(1 - 0.025, df)

Margin of error

margin_of_error = t_critical * (std_dev / np.sqrt(n))

Confidence interval

lower_bound = mean - margin_of_error upper_bound = mean + margin_of_error

mean, std_dev, t_critical, (lower_bound, upper_bound### Results:

  • Sample Mean (xΛ‰\bar{x}): 5.2475.247 (rounded to three decimal places)
  • Sample Standard Deviation (ss): 0.2000.200 (rounded to three decimal places)
  • Critical Value (tβˆ—t^*): 2.1452.145 (rounded to three decimal places)

The 95% confidence interval for the true mean red blood cell count is: (5.136,5.357)(5.136, 5.357)

Do you have any questions, or would you like more details?

Related Questions:

  1. How do we interpret this confidence interval in a biological context?
  2. Why do we use the tt-distribution instead of the normal distribution?
  3. How does sample size affect the width of the confidence interval?
  4. Can this method be applied to non-normal data distributions?
  5. What happens to the confidence interval if we choose a 99% confidence level instead?

Tip:

When calculating confidence intervals, always verify whether the data meets the assumptions

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Confidence Intervals
t-Distribution

Formulas

Confidence Interval formula: CI = xΜ„ Β± t* Γ— (s / √n)
Sample Mean: xΜ„ = Ξ£x / n
Sample Standard Deviation: s = √(Ξ£(xi - xΜ„)Β² / (n - 1))

Theorems

Central Limit Theorem

Suitable Grade Level

Grades 11-12, College Level