Math Problem Statement

La maquiladora Cintas y perchas desea calcular el tiempo medio que los trabajadores que laboran en el centro de la ciudad utilizan para llegar al trabajo. Una muestra de 15 trabajadores revela el tiempo medio es de 35.06 minutos, con una desviación estándar de 6 minutos. Construya un intervalo de confianza del 98% para la media de la población.

Solution

To calculate a 98% confidence interval for the mean time workers take to get to work, we can follow these steps:

Provided Data:

  • Sample mean (xˉ\bar{x}) = 35.06 minutes
  • Sample standard deviation (ss) = 6 minutes
  • Sample size (nn) = 15 workers
  • Confidence level = 98%

Step 1: Determine the critical value (tt^*)

Since the sample size is small (n=15n = 15), we use the Student's t-distribution. The degrees of freedom (dfdf) are: df=n1=151=14df = n - 1 = 15 - 1 = 14

For a 98% confidence level, the area in both tails of the distribution is 10.98=0.021 - 0.98 = 0.02, meaning 0.010.01 in each tail. Using tt-distribution tables or a calculator, the critical value tt^* for df=14df = 14 at 98% confidence is approximately: t2.624t^* \approx 2.624

Step 2: Compute the standard error (SE)

The standard error of the mean is calculated as: SE=sn=6151.549SE = \frac{s}{\sqrt{n}} = \frac{6}{\sqrt{15}} \approx 1.549

Step 3: Calculate the margin of error (ME)

The margin of error is given by: ME=tSE=2.6241.5494.065ME = t^* \cdot SE = 2.624 \cdot 1.549 \approx 4.065

Step 4: Determine the confidence interval

The confidence interval is calculated as: Confidence Interval=xˉ±ME\text{Confidence Interval} = \bar{x} \pm ME Confidence Interval=35.06±4.065\text{Confidence Interval} = 35.06 \pm 4.065

Final Result:

Confidence Interval=[30.995,39.125]\text{Confidence Interval} = [30.995, 39.125]

Thus, the 98% confidence interval for the mean time is approximately [30.995, 39.125] minutes.

Would you like me to elaborate on any part of this calculation?


5 Related Questions:

  1. What is the importance of using the Student's t-distribution in small samples?
  2. How does the confidence level affect the width of the confidence interval?
  3. What happens to the margin of error if the sample size increases?
  4. Why do we use a critical tt^* value instead of zz^* here?
  5. How can this confidence interval help the company make decisions about worker commuting?

Tip:

To reduce the width of a confidence interval, you can increase the sample size or reduce variability in your data.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Confidence Interval
Statistics
Student's t-distribution

Formulas

Standard Error (SE) = s / sqrt(n)
Margin of Error (ME) = t* * SE
Confidence Interval = x̄ ± ME

Theorems

Student's t-distribution theorem

Suitable Grade Level

College-level introductory statistics or AP Statistics