Math Problem Statement

Hi, can you compute step by step (x+iy)^2(x-iy)^2

Solution

To compute (x+iy)2(xiy)2(x + iy)^2(x - iy)^2, we will proceed step by step.

Step 1: Expand (x+iy)2(x + iy)^2

Using the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2: (x+iy)2=x2+2x(iy)+(iy)2(x + iy)^2 = x^2 + 2x(iy) + (iy)^2 =x2+2ixyy2= x^2 + 2ixy - y^2

Thus, (x+iy)2=x2y2+2ixy(x + iy)^2 = x^2 - y^2 + 2ixy

Step 2: Expand (xiy)2(x - iy)^2

Similarly, expanding (xiy)2(x - iy)^2: (xiy)2=x22x(iy)+(iy)2(x - iy)^2 = x^2 - 2x(iy) + (iy)^2 =x22ixyy2= x^2 - 2ixy - y^2

Thus, (xiy)2=x2y22ixy(x - iy)^2 = x^2 - y^2 - 2ixy

Step 3: Multiply (x+iy)2(x + iy)^2 and (xiy)2(x - iy)^2

Now, multiply the two results: (x+iy)2(xiy)2=(x2y2+2ixy)(x2y22ixy)(x + iy)^2(x - iy)^2 = (x^2 - y^2 + 2ixy)(x^2 - y^2 - 2ixy)

Step 4: Use the difference of squares formula

This is a difference of squares: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2 Here, a=x2y2a = x^2 - y^2 and b=2ixyb = 2ixy. Substituting these: (x+iy)2(xiy)2=(x2y2)2(2ixy)2(x + iy)^2(x - iy)^2 = (x^2 - y^2)^2 - (2ixy)^2

Step 5: Simplify the terms

  1. Compute (x2y2)2(x^2 - y^2)^2: (x2y2)2=(x2y2)(x2y2)(x^2 - y^2)^2 = (x^2 - y^2)(x^2 - y^2)
  2. Compute (2ixy)2(2ixy)^2: (2ixy)2=(2xy)2i2=4x2y2(1)=4x2y2(2ixy)^2 = (2xy)^2 \cdot i^2 = 4x^2y^2 \cdot (-1) = -4x^2y^2

Substitute these back into the equation: (x+iy)2(xiy)2=(x2y2)2(4x2y2)(x + iy)^2(x - iy)^2 = (x^2 - y^2)^2 - (-4x^2y^2) (x+iy)2(xiy)2=(x2y2)2+4x2y2(x + iy)^2(x - iy)^2 = (x^2 - y^2)^2 + 4x^2y^2

Step 6: Final expression

This is the final simplified result: (x+iy)2(xiy)2=(x2+y2)2(x + iy)^2(x - iy)^2 = (x^2 + y^2)^2

Conclusion

The final result is: (x+iy)2(xiy)2=(x2+y2)2(x + iy)^2(x - iy)^2 = (x^2 + y^2)^2

Would you like more details or have any questions?


Related Questions:

  1. What is the geometric interpretation of (x2+y2)(x^2 + y^2) in the complex plane?
  2. How would the result change if ii was replaced with a general complex constant zz?
  3. What happens if we expand (x+iy)3(xiy)3(x + iy)^3(x - iy)^3?
  4. Can we factorize (x2+y2)2(x^2 + y^2)^2 further?
  5. How is this computation related to modulus of a complex number?

Tip:

When working with complex numbers, always check for symmetry properties (like conjugates) to simplify calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Algebra
Exponentiation
Difference of Squares

Formulas

(a + b)^2 = a^2 + 2ab + b^2
(a - b)^2 = a^2 - 2ab + b^2
(a + b)(a - b) = a^2 - b^2

Theorems

Difference of Squares Theorem

Suitable Grade Level

Grades 10-12