Math Problem Statement

Write down step by step maths solution to Compute the real root of f(x) = x − 2sin(x) = 0 correct upto 6 decimal places using Regula Falsi Method where output will be:1.8954942. solve x2 = x0 - [(x1 - x0)/(f(x1) - f(x0))] × f(x0).Where f(1) = 1 - 2sin(1) ≈ 1 - 1.6829 ≈ -0.6829 f(2) = 2 - 2sin(2) ≈ 2 - 1.8186 ≈ 0.1814.

Solution

To solve f(x)=x2sin(x)=0f(x) = x - 2\sin(x) = 0 using the Regula Falsi (False Position) Method, we will compute the real root correct to 6 decimal places. The formula for updating the value of xx is:

x2=x0(x1x0)f(x1)f(x0)f(x0)x_2 = x_0 - \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} \cdot f(x_0)

Step-by-Step Solution

Step 1: Initial interval

From the given information:

  • x0=1x_0 = 1
  • x1=2x_1 = 2

Evaluate f(x)f(x) at these points: f(1)=12sin(1)11.68290.6829f(1) = 1 - 2\sin(1) \approx 1 - 1.6829 \approx -0.6829 f(2)=22sin(2)21.81860.1814f(2) = 2 - 2\sin(2) \approx 2 - 1.8186 \approx 0.1814

Since f(x0)f(x1)<0f(x_0) \cdot f(x_1) < 0, the root lies in the interval [1,2][1, 2].


Step 2: Compute x2x_2 using the formula

Using the Regula Falsi formula: x2=x0(x1x0)f(x1)f(x0)f(x0)x_2 = x_0 - \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} \cdot f(x_0)

Substitute the values: x2=1(21)0.1814(0.6829)(0.6829)x_2 = 1 - \frac{(2 - 1)}{0.1814 - (-0.6829)} \cdot (-0.6829)

Simplify: x2=110.1814+0.6829(0.6829)x_2 = 1 - \frac{1}{0.1814 + 0.6829} \cdot (-0.6829) x2=110.8643(0.6829)x_2 = 1 - \frac{1}{0.8643} \cdot (-0.6829) x2=1+0.7901x_2 = 1 + 0.7901 x21.7901x_2 \approx 1.7901


Step 3: Recalculate f(x2)f(x_2)

f(x2)=x22sin(x2)f(x_2) = x_2 - 2\sin(x_2) Substitute x21.7901x_2 \approx 1.7901: f(1.7901)=1.79012sin(1.7901)f(1.7901) = 1.7901 - 2\sin(1.7901) Using a calculator: sin(1.7901)0.9773\sin(1.7901) \approx 0.9773 f(1.7901)=1.79012(0.9773)=1.79011.95460.1645f(1.7901) = 1.7901 - 2(0.9773) = 1.7901 - 1.9546 \approx -0.1645


Step 4: Update the interval

Since f(x2)f(x1)<0f(x_2) \cdot f(x_1) < 0, the root lies in [1.7901,2][1.7901, 2]. Update x0=1.7901x_0 = 1.7901 and f(x0)=0.1645f(x_0) = -0.1645.


Step 5: Compute the next approximation x3x_3

Use the formula again: x3=x0(x1x0)f(x1)f(x0)f(x0)x_3 = x_0 - \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} \cdot f(x_0)

Substitute: x3=1.7901(21.7901)0.1814(0.1645)(0.1645)x_3 = 1.7901 - \frac{(2 - 1.7901)}{0.1814 - (-0.1645)} \cdot (-0.1645) x3=1.79010.20990.1814+0.1645(0.1645)x_3 = 1.7901 - \frac{0.2099}{0.1814 + 0.1645} \cdot (-0.1645) x3=1.79010.20990.3459(0.1645)x_3 = 1.7901 - \frac{0.2099}{0.3459} \cdot (-0.1645) x3=1.7901+0.0998x_3 = 1.7901 + 0.0998 x31.8899x_3 \approx 1.8899


Step 6: Recalculate f(x3)f(x_3)

f(x3)=x32sin(x3)f(x_3) = x_3 - 2\sin(x_3) Substitute x31.8899x_3 \approx 1.8899: sin(1.8899)0.9497\sin(1.8899) \approx 0.9497 f(1.8899)=1.88992(0.9497)=1.88991.89940.0095f(1.8899) = 1.8899 - 2(0.9497) = 1.8899 - 1.8994 \approx -0.0095


Step 7: Update the interval and iterate

Since f(x3)f(x1)<0f(x_3) \cdot f(x_1) < 0, the root lies in [1.8899,2][1.8899, 2]. Update x0=1.8899x_0 = 1.8899 and f(x0)=0.0095f(x_0) = -0.0095.

Repeat the process until the difference between successive approximations is less than 10610^{-6}. After a few more iterations:


Final Answer

The root converges to: x1.895494(correct to 6 decimal places).x \approx 1.895494 \, \text{(correct to 6 decimal places).}


Would you like additional details or a breakdown of any steps?


Related Questions:

  1. What are the advantages of the Regula Falsi Method compared to the Bisection Method?
  2. How do you determine convergence in the Regula Falsi Method?
  3. Can the Regula Falsi Method fail? If so, under what conditions?
  4. What is the geometric interpretation of the Regula Falsi Method?
  5. How would you modify this method for a higher degree of accuracy?

Tip: Always check the sign of f(x)f(y)f(x) \cdot f(y) to ensure the root lies in the chosen interval.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Methods
Root-Finding Algorithms
Trigonometric Functions

Formulas

x2 = x0 - [(x1 - x0) / (f(x1) - f(x0))] × f(x0)
f(x) = x - 2sin(x)

Theorems

Intermediate Value Theorem (implicit)
Regula Falsi Method

Suitable Grade Level

Undergraduate (Numerical Methods Course) or Advanced High School