Math Problem Statement

Diketahui f(x) = 3x^2 + 7 dan g(x) = √(2x - 1). Tentukan (f ∘ g)(x) dan D(f ∘ g)

Solution

The given problem requires calculating the composite function (fg)(x)(f \circ g)(x) and determining its domain D(fg)D(f \circ g). Here's the solution:

Definitions:

  • f(x)=3x2+7f(x) = 3x^2 + 7
  • g(x)=2x1g(x) = \sqrt{2x - 1}

Step 1: Calculate (fg)(x)(f \circ g)(x)

(fg)(x)=f(g(x))=f(2x1)(f \circ g)(x) = f(g(x)) = f(\sqrt{2x - 1}) Substitute g(x)g(x) into f(x)f(x): f(2x1)=3(2x1)2+7f(\sqrt{2x - 1}) = 3(\sqrt{2x - 1})^2 + 7 Simplify: (2x1)2=2x1(\sqrt{2x - 1})^2 = 2x - 1 f(2x1)=3(2x1)+7f(\sqrt{2x - 1}) = 3(2x - 1) + 7 f(2x1)=6x3+7=6x+4f(\sqrt{2x - 1}) = 6x - 3 + 7 = 6x + 4

Thus: (fg)(x)=6x+4(f \circ g)(x) = 6x + 4

Step 2: Determine the domain D(fg)D(f \circ g)

The domain of (fg)(x)(f \circ g)(x) depends on g(x)g(x), which must be defined: g(x)=2x1g(x) = \sqrt{2x - 1} The expression under the square root must be non-negative: 2x10    2x1    x122x - 1 \geq 0 \implies 2x \geq 1 \implies x \geq \frac{1}{2}

Thus, the domain of g(x)g(x) is x12x \geq \frac{1}{2}. Since f(g(x))f(g(x)) is valid for all x12x \geq \frac{1}{2}, the domain D(fg)D(f \circ g) is: D(fg)={xRx12}D(f \circ g) = \{x \in \mathbb{R} \mid x \geq \frac{1}{2}\}

Final Answer:

  1. Composite function: (fg)(x)=6x+4(f \circ g)(x) = 6x + 4
  2. Domain: D(fg)=[12,)D(f \circ g) = [\frac{1}{2}, \infty)

Would you like further explanation or another example?


Here are 5 related questions for practice:

  1. What is the inverse of g(x)=2x1g(x) = \sqrt{2x - 1}?
  2. How do you determine the domain of a composite function in general?
  3. What is (gf)(x)(g \circ f)(x) for the given f(x)f(x) and g(x)g(x)?
  4. How does the domain of g(x)g(x) affect the domain of (fg)(x)(f \circ g)(x)?
  5. What happens to the composite function when f(x)=x2f(x) = x^2 and g(x)=x3g(x) = \sqrt{x - 3}?

Tip: When working with composite functions, always check the domain constraints step-by-step, starting from the inner function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Composite Functions
Function Domain
Square Root Functions

Formulas

(f ∘ g)(x) = f(g(x))
Square root simplification: (√a)^2 = a

Theorems

Function Composition
Domain of Square Root Functions

Suitable Grade Level

Grades 10-12