Math Problem Statement

Complete the truth table for the logical statement (¬p ∧ (p → q)) → ¬q.

Solution

Let's walk through completing the truth table for the statement (¬p(pq))¬q(\neg p \land (p \rightarrow q)) \rightarrow \neg q.

Steps to break down the expression:

  1. Negation of pp: ¬p\neg p
  2. Implication pqp \rightarrow q: This is false only when p=Tp = T and q=Fq = F, and true otherwise.
  3. Conjunction: ¬p(pq)\neg p \land (p \rightarrow q) combines the results from steps 1 and 2.
  4. Negation of qq: ¬q\neg q
  5. Final Implication: The overall expression (¬p(pq))¬q(\neg p \land (p \rightarrow q)) \rightarrow \neg q is evaluated by combining the conjunction from step 3 with the negation from step 4.

Let's fill in the missing values step by step:

1. Row 1 (p=T,q=Tp = T, q = T):

  • ¬p=F\neg p = F
  • pq=Tp \rightarrow q = T
  • ¬p(pq)=FT=F\neg p \land (p \rightarrow q) = F \land T = F
  • ¬q=F\neg q = F
  • (¬p(pq))¬q=FF=T(\neg p \land (p \rightarrow q)) \rightarrow \neg q = F \rightarrow F = T

2. Row 2 (p=T,q=Fp = T, q = F):

  • ¬p=F\neg p = F
  • pq=Fp \rightarrow q = F
  • ¬p(pq)=FF=F\neg p \land (p \rightarrow q) = F \land F = F
  • ¬q=T\neg q = T
  • (¬p(pq))¬q=FT=T(\neg p \land (p \rightarrow q)) \rightarrow \neg q = F \rightarrow T = T

3. Row 3 (p=F,q=Tp = F, q = T):

  • ¬p=T\neg p = T
  • pq=Tp \rightarrow q = T
  • ¬p(pq)=TT=T\neg p \land (p \rightarrow q) = T \land T = T
  • ¬q=F\neg q = F
  • (¬p(pq))¬q=TF=F(\neg p \land (p \rightarrow q)) \rightarrow \neg q = T \rightarrow F = F

4. Row 4 (p=F,q=Fp = F, q = F):

  • ¬p=T\neg p = T
  • pq=Tp \rightarrow q = T
  • ¬p(pq)=TT=T\neg p \land (p \rightarrow q) = T \land T = T
  • ¬q=T\neg q = T
  • (¬p(pq))¬q=TT=T(\neg p \land (p \rightarrow q)) \rightarrow \neg q = T \rightarrow T = T

Filled Truth Table:

ppqq¬p\neg ppqp \rightarrow q¬p(pq)\neg p \land (p \rightarrow q)¬q\neg q(¬p(pq))¬q(\neg p \land (p \rightarrow q)) \rightarrow \neg q
TTFTFFT
TFFFFTT
FTTTTFF
FFTTTTT

Now the table is complete.

Would you like further details or explanations on any part of this truth table?

5 Follow-up Questions:

  1. What is the truth value of an implication when the premise is false?
  2. How does negation affect the values of a logical statement?
  3. Why does the conjunction in row 3 result in a false implication?
  4. What would change if the expression was (p(pq))q(p \land (p \rightarrow q)) \rightarrow q?
  5. How would you construct a truth table for a biconditional statement pqp \leftrightarrow q?

Tip: The implication pqp \rightarrow q is true unless pp is true and qq is false.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
Logical Connectives

Formulas

Implication: p → q is false when p is true and q is false; otherwise, it is true.
Negation: ¬p is true if p is false, and false if p is true.
Conjunction: p ∧ q is true only if both p and q are true.

Theorems

Truth Table Evaluation
Logical Implication

Suitable Grade Level

Grades 9-12