Math Problem Statement

Find: (4x2y3 + 2xy2 – 2y) – (–7x2y3 + 6xy2 – 2y)

Place the correct coefficients in the difference.

x2y3 + xy2 + y

Solution

To solve (4x2y3+2xy22y)(7x2y3+6xy22y)(4x^2y^3 + 2xy^2 - 2y) - (-7x^2y^3 + 6xy^2 - 2y), we will first distribute the negative sign through the second set of parentheses, and then combine like terms.

First, distribute the negative sign: 4x2y3+2xy22y(7x2y3+6xy22y)4x^2y^3 + 2xy^2 - 2y - (-7x^2y^3 + 6xy^2 - 2y) =4x2y3+2xy22y+7x2y36xy2+2y= 4x^2y^3 + 2xy^2 - 2y + 7x^2y^3 - 6xy^2 + 2y

Now, combine like terms:

  1. Combine the x2y3x^2y^3 terms: 4x2y3+7x2y3=11x2y34x^2y^3 + 7x^2y^3 = 11x^2y^3

  2. Combine the xy2xy^2 terms: 2xy26xy2=4xy22xy^2 - 6xy^2 = -4xy^2

  3. Combine the yy terms: 2y+2y=0-2y + 2y = 0

Thus, the resulting expression is: 11x2y34xy211x^2y^3 - 4xy^2

The coefficients for x2y3x^2y^3, xy2xy^2, and yy are 1111, 4-4, and 00 respectively.

If you have any questions or need further details, please let me know.

Here are 5 more questions you might find interesting:

  1. Simplify the expression (3a2b+2ab24b)(5a2bab2+3b)(3a^2b + 2ab^2 - 4b) - (5a^2b - ab^2 + 3b).
  2. Factor the polynomial x33x2+2xx^3 - 3x^2 + 2x.
  3. Solve the quadratic equation 2x25x+3=02x^2 - 5x + 3 = 0.
  4. Find the derivative of f(x)=x42x3+x5f(x) = x^4 - 2x^3 + x - 5.
  5. Evaluate the integral (3x22x+1)dx\int (3x^2 - 2x + 1) dx.

Tip: When combining like terms, always ensure that you correctly align the terms with the same variables and powers to avoid mistakes.