Math Problem Statement

12C320C2 + 12C420C2 + 12C5*20C0

Solution

We will evaluate the given expression step by step. The expression is:

(123)(202)+(124)(202)+(125)(200)\binom{12}{3} \cdot \binom{20}{2} + \binom{12}{4} \cdot \binom{20}{2} + \binom{12}{5} \cdot \binom{20}{0}

Step 1: Recall the formula for combinations

The formula for combinations is: (nr)=n!r!(nr)!\binom{n}{r} = \frac{n!}{r!(n-r)!}

Step 2: Calculate each term

  1. First term: (123)(202)\binom{12}{3} \cdot \binom{20}{2} (123)=12!3!(123)!=121110321=220\binom{12}{3} = \frac{12!}{3!(12-3)!} = \frac{12 \cdot 11 \cdot 10}{3 \cdot 2 \cdot 1} = 220 (202)=20!2!(202)!=201921=190\binom{20}{2} = \frac{20!}{2!(20-2)!} = \frac{20 \cdot 19}{2 \cdot 1} = 190 (123)(202)=220190=41800\binom{12}{3} \cdot \binom{20}{2} = 220 \cdot 190 = 41800

  2. Second term: (124)(202)\binom{12}{4} \cdot \binom{20}{2} (124)=12!4!(124)!=12111094321=495\binom{12}{4} = \frac{12!}{4!(12-4)!} = \frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1} = 495 (202)=190(calculated earlier)\binom{20}{2} = 190 \quad \text{(calculated earlier)} (124)(202)=495190=94050\binom{12}{4} \cdot \binom{20}{2} = 495 \cdot 190 = 94050

  3. Third term: (125)(200)\binom{12}{5} \cdot \binom{20}{0} (125)=12!5!(125)!=1211109854321=792\binom{12}{5} = \frac{12!}{5!(12-5)!} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 792 \binom{20}{0} = 1 \quad \text{(since \binom{n}{0} = 1foranyfor anyn)} (125)(200)=7921=792\binom{12}{5} \cdot \binom{20}{0} = 792 \cdot 1 = 792

Step 3: Add the results

Now, sum up the three terms: 41800+94050+792=13664241800 + 94050 + 792 = 136642

Final Answer:

136642\boxed{136642}

Would you like a deeper explanation of any step, or additional examples? Here are 5 related questions to expand on this:

  1. How do combinations differ from permutations?
  2. What is the general formula for calculating (nr)\binom{n}{r}?
  3. How would the result change if the numbers in the problem were larger (e.g., (155)\binom{15}{5})?
  4. Can you explain the connection between binomial coefficients and Pascal's Triangle?
  5. How are combinations used in probability problems?

Tip: For faster calculations of combinations, try using factorial simplifications and cancel terms early.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Combinatorics
Binomial Coefficients

Formulas

Combination formula \( \binom{n}{r} = \frac{n!}{r!(n-r)!} \)

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12