Math Problem Statement

[ \binom{7}{2} \times 2! = \frac{7!}{2!(7-2)!} \times 2 = \frac{7 \times 6}{2 \times 1} \times 2 = 21 \times 2 = 42 ]

Solution

Let's break down your equation step by step:

  1. Binomial Coefficient Definition: (72)=7!2!(72)!\binom{7}{2} = \frac{7!}{2!(7-2)!} This is the formula for combinations. For (72)\binom{7}{2}, we have: (72)=7×62×1=21\binom{7}{2} = \frac{7 \times 6}{2 \times 1} = 21

  2. **

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Combinatorics
Factorials
Permutations

Formulas

Combination formula: \binom{n}{r} = \frac{n!}{r!(n-r)!}
Factorial: n! = n \times (n-1) \times ... \times 1

Theorems

Binomial Theorem

Suitable Grade Level

Grades 9-12