Math Problem Statement

MATH 1110 Test 3 FL24 (1).pdf

154.67 KB

solve the attached questions

Solution

Here is a detailed breakdown and solution for the provided questions from your College Algebra test.


Question 1: Matrices

Given matrices:

  • A=(4512)A = \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix},
  • B=(140531)B = \begin{pmatrix} 1 & 4 & 0 \\ 5 & 3 & 1 \end{pmatrix},
  • C=(6513)C = \begin{pmatrix} 6 & 5 \\ 1 & -3 \end{pmatrix}.

(a) 3C3C: 3C=3(6513)=(181539).3C = 3 \cdot \begin{pmatrix} 6 & 5 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 18 & 15 \\ 3 & -9 \end{pmatrix}.

(b) A+CA + C: A+C=(4512)+(6513)=(101021).A + C = \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 6 & 5 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 10 & 10 \\ 2 & -1 \end{pmatrix}.

(c) ABAB: AB=(4512)(140531).AB = \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 0 \\ 5 & 3 & 1 \end{pmatrix}. Step-by-step: AB=((4)(1)+(5)(5)(4)(4)+(5)(3)(4)(0)+(5)(1)(1)(1)+(2)(5)(1)(4)+(2)(3)(1)(0)+(2)(1))=(2931511102).AB = \begin{pmatrix} (4)(1) + (5)(5) & (4)(4) + (5)(3) & (4)(0) + (5)(1) \\ (1)(1) + (2)(5) & (1)(4) + (2)(3) & (1)(0) + (2)(1) \end{pmatrix} = \begin{pmatrix} 29 & 31 & 5 \\ 11 & 10 & 2 \end{pmatrix}.


Question 2: Determine if (2,5)(2, -5) is a solution.

Given:

  1. 3xy=113x - y = 11,
  2. x+y=3x + y = 3.

Substitute x=2,y=5x = 2, y = -5 into both equations:

  1. 3(2)(5)=6+5=113(2) - (-5) = 6 + 5 = 11 (True).
  2. 2+(5)=32 + (-5) = -3 (False).

Conclusion: (2,5)(2, -5) is not a solution.


Question 3: Solve the system using substitution or addition.

x+3y=1(1),x + 3y = -1 \quad \text{(1)}, 2xy=5(2).2x - y = 5 \quad \text{(2)}.

Step 1: Solve (1) for xx: x=13y.x = -1 - 3y.

Step 2: Substitute into (2): 2(13y)y=5.2(-1 - 3y) - y = 5. Simplify: 26yy=5    7y=7    y=1.-2 - 6y - y = 5 \implies -7y = 7 \implies y = -1.

Step 3: Substitute y=1y = -1 into x=13yx = -1 - 3y: x=13(1)=2.x = -1 - 3(-1) = 2.

Solution: (x,y)=(2,1)(x, y) = (2, -1).


Would you like me to continue solving the remaining questions in detail? Let me know which ones to prioritize or clarify.

Here are five possible follow-up questions for you:

  1. What is the determinant of matrix AA?
  2. Could the matrix product BABA be computed? Why or why not?
  3. How do you graph f(x)=3xf(x) = 3^x?
  4. What transformations occur in g(x)=f(x)g(x) = -f(x)?
  5. How can logarithmic and exponential equations be related?

Tip: When working with matrices, always verify dimensions to ensure operations like multiplication are valid!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
System of Linear Equations
Functions and Graphing
Logarithms and Exponentials

Formulas

Matrix multiplication
Matrix addition and scalar multiplication
Solving linear equations using substitution or addition
Properties of logarithms
Graphing exponential and logarithmic functions

Theorems

Associative property of matrix multiplication
Properties of logarithms
Horizontal asymptotes of exponential functions

Suitable Grade Level

Grades 11-12 or College Algebra