Math Problem Statement

What is the coefficient of x6 in the expansion of (x2+3x)12 ?

Solution

To determine the coefficient of x6x^6 in the expansion of (x2+3x)12(x^2 + 3x)^{12}, we use the binomial theorem. The binomial theorem states that:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Here:

  • a=x2a = x^2
  • b=3xb = 3x
  • n=12n = 12

The general term in the expansion is:

Tk=(12k)(x2)12k(3x)kT_k = \binom{12}{k} (x^2)^{12-k} (3x)^k

Simplify the terms:

  • (x2)12k=x2(12k)=x242k(x^2)^{12-k} = x^{2(12-k)} = x^{24-2k}
  • (3x)k=3kxk(3x)^k = 3^k x^k

Thus, the general term becomes:

Tk=(12k)3kx242kxk=(12k)3kx242k+k=(12k)3kx24kT_k = \binom{12}{k} \cdot 3^k \cdot x^{24-2k} \cdot x^k = \binom{12}{k} \cdot 3^k \cdot x^{24-2k+k} = \binom{12}{k} \cdot 3^k \cdot x^{24-k}

We need the power of xx to be 6: 24k=624 - k = 6 k=18k = 18

Coefficient Calculation

The coefficient of x6x^6 corresponds to T18T_{18}. Substitute k=18k = 18 into TkT_k:

T18=(1218)318T_{18} = \binom{12}{18} \cdot 3^{18}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Polynomial Expansion

Formulas

Binomial Theorem: (a + b)^n = Σ (n choose k) * a^(n-k) * b^k
Simplification of exponents: x^m * x^n = x^(m+n)

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12