Math Problem Statement

Let d be the distance from a point on the plane x - 2y + 3z = 12 to the point (0, 2, 2). For f(x, y) = d^2, find the following derivatives: fx(x, y), fy(x, y). Find the critical point and the closest point on the plane to (0, 2, 2).

Solution

To solve this problem step by step, here’s the breakdown:

Step 1: Define the function f(x,y)=d2f(x, y) = d^2

The distance from a point on the plane x2y+3z=12x - 2y + 3z = 12 to the point (0,2,2)(0, 2, 2) is d=(x0)2+(y2)2+(z2)2d = \sqrt{(x - 0)^2 + (y - 2)^2 + (z - 2)^2}. Squaring the distance gives: f(x,y)=d2=x2+(y2)2+(z2)2f(x, y) = d^2 = x^2 + (y - 2)^2 + (z - 2)^2 Substituting zz from the plane equation z=12x+2y3z = \frac{12 - x + 2y}{3}: f(x,y)=x2+(y2)2+(12x+2y32)2f(x, y) = x^2 + (y - 2)^2 + \left(\frac{12 - x + 2y}{3} - 2\right)^2

Step 2: Simplify the function f(x,y)f(x, y)

Simplify the third term: z2=12x+2y32=12x+2y63=6x+2y3z - 2 = \frac{12 - x + 2y}{3} - 2 = \frac{12 - x + 2y - 6}{3} = \frac{6 - x + 2y}{3} Squaring this term: (6x+2y3)2=(6x+2y)29\left(\frac{6 - x + 2y}{3}\right)^2 = \frac{(6 - x + 2y)^2}{9} Thus, f(x,y)f(x, y) becomes: f(x,y)=x2+(y2)2+(6x+2y)29f(x, y) = x^2 + (y - 2)^2 + \frac{(6 - x + 2y)^2}{9}

Step 3: Find fx(x,y)f_x(x, y) and fy(x,y)f_y(x, y)

To find critical points, compute partial derivatives.

Partial derivative with respect to xx:

fx(x,y)=2x+29(6x+2y)(1)f_x(x, y) = 2x + \frac{2}{9}(6 - x + 2y)(-1) Simplify: fx(x,y)=2x29(6x+2y)=2x122x+4y9f_x(x, y) = 2x - \frac{2}{9}(6 - x + 2y) = 2x - \frac{12 - 2x + 4y}{9} Combine terms: fx(x,y)=2x129+2x94y9=18x+2x91294y9f_x(x, y) = 2x - \frac{12}{9} + \frac{2x}{9} - \frac{4y}{9} = \frac{18x + 2x}{9} - \frac{12}{9} - \frac{4y}{9} fx(x,y)=20x4y129f_x(x, y) = \frac{20x - 4y - 12}{9}

Partial derivative with respect to yy:

fy(x,y)=2(y2)+29(6x+2y)(2)f_y(x, y) = 2(y - 2) + \frac{2}{9}(6 - x + 2y)(2) Simplify: fy(x,y)=2y4+4(6x+2y)9=2y4+244x+8y9f_y(x, y) = 2y - 4 + \frac{4(6 - x + 2y)}{9} = 2y - 4 + \frac{24 - 4x + 8y}{9} Combine terms: fy(x,y)=18y+8y94+244x9=26y4x+2494f_y(x, y) = \frac{18y + 8y}{9} - 4 + \frac{24 - 4x}{9} = \frac{26y - 4x + 24}{9} - 4 Simplify further: fy(x,y)=26y4x+249369=26y4x129f_y(x, y) = \frac{26y - 4x + 24}{9} - \frac{36}{9} = \frac{26y - 4x - 12}{9}

Step 4: Solve for the critical point

Set fx(x,y)=0f_x(x, y) = 0 and fy(x,y)=0f_y(x, y) = 0: 20x4y129=0and26y4x129=0\frac{20x - 4y - 12}{9} = 0 \quad \text{and} \quad \frac{26y - 4x - 12}{9} = 0 Simplify the first equation: 20x4y12=020x=4y+125x=y+3y=5x320x - 4y - 12 = 0 \quad \Rightarrow \quad 20x = 4y + 12 \quad \Rightarrow \quad 5x = y + 3 \quad \Rightarrow \quad y = 5x - 3 Substitute y=5x3y = 5x - 3 into the second equation: 26(5x3)4x12=026(5x - 3) - 4x - 12 = 0 Simplify: 130x784x12=0126x90=0x=90126=57130x - 78 - 4x - 12 = 0 \quad \Rightarrow \quad 126x - 90 = 0 \quad \Rightarrow \quad x = \frac{90}{126} = \frac{5}{7} Solve for yy: y=5(57)3=2573=257217=47y = 5\left(\frac{5}{7}\right) - 3 = \frac{25}{7} - 3 = \frac{25}{7} - \frac{21}{7} = \frac{4}{7} Thus, the critical point is: (x,y)=(57,47)(x, y) = \left(\frac{5}{7}, \frac{4}{7}\right)

Step 5: Find the closest point on the plane

Substitute x=57x = \frac{5}{7} and y=47y = \frac{4}{7} into the plane equation x2y+3z=12x - 2y + 3z = 12: 572(47)+3z=125787+3z=12\frac{5}{7} - 2\left(\frac{4}{7}\right) + 3z = 12 \quad \Rightarrow \quad \frac{5}{7} - \frac{8}{7} + 3z = 12 37+3z=123z=12+37=847+37=877-\frac{3}{7} + 3z = 12 \quad \Rightarrow \quad 3z = 12 + \frac{3}{7} = \frac{84}{7} + \frac{3}{7} = \frac{87}{7} z=8721=297z = \frac{87}{21} = \frac{29}{7} The closest point is: (x,y,z)=(57,47,297)\left(x, y, z\right) = \left(\frac{5}{7}, \frac{4}{7}, \frac{29}{7}\right)

Let me know if you would like further clarifications!


Expanding Questions:

  1. How do partial derivatives help find critical points in optimization problems?
  2. Can this approach be generalized to higher dimensions?
  3. What role does squaring the distance play in simplifying calculations?
  4. How does substituting variables from constraints aid in solving optimization problems?
  5. What other techniques exist for minimizing distances in constrained systems?

Tip: Always check whether the critical points lie within the domain of the problem!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Partial Derivatives
Optimization
Distance Minimization

Formulas

Distance formula: d = sqrt((x - x0)^2 + (y - y0)^2 + (z - z0)^2)
Plane equation substitution
Partial derivative with respect to x and y

Theorems

Optimization of functions of two variables
Lagrange Multipliers (implicitly)

Suitable Grade Level

College-level Calculus