Math Problem Statement
Solution
To classify the equilibrium point for the given system of differential equations:
we need to follow these steps:
Step 1: Verify the Equilibrium Point
An equilibrium point satisfies and . Substituting and :
Thus, is indeed an equilibrium point.
Step 2: Linearize the System
Compute the Jacobian matrix of the system:
\begin{bmatrix} \frac{\partial}{\partial x}\left(10 - x^2 - y^2\right) & \frac{\partial}{\partial y}\left(10 - x^2 - y^2\right) \\ \frac{\partial}{\partial x}\left(3x - y\right) & \frac{\partial}{\partial y}\left(3x - y\right) \end{bmatrix}.$$ Calculate each partial derivative: - $$\frac{\partial}{\partial x}\left(10 - x^2 - y^2\right) = -2x$$, - $$\frac{\partial}{\partial y}\left(10 - x^2 - y^2\right) = -2y$$, - $$\frac{\partial}{\partial x}\left(3x - y\right) = 3$$, - $$\frac{\partial}{\partial y}\left(3x - y\right) = -1$$. Thus, the Jacobian matrix is: $$J(x, y) = \begin{bmatrix} -2x & -2y \\ 3 & -1 \end{bmatrix}.$$ At the equilibrium point $$(-1, -3)$$: $$J(-1, -3) = \begin{bmatrix} -2(-1) & -2(-3) \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 3 & -1 \end{bmatrix}.$$ --- ### Step 3: Analyze the Eigenvalues of the Jacobian Find the eigenvalues $$\lambda$$ of the matrix $$J(-1, -3)$$ by solving $$\det(J - \lambda I) = 0$$: $$\det \begin{bmatrix} 2 - \lambda & 6 \\ 3 & -1 - \lambda \end{bmatrix} = 0.$$ Expanding the determinant: $$(2 - \lambda)(-1 - \lambda) - (6)(3) = 0,$$ $$(-2 - \lambda + \lambda^2) - 18 = 0,$$ $$\lambda^2 - \lambda - 20 = 0.$$ Solve this quadratic equation using the quadratic formula: $$\lambda = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-20)}}{2(1)},$$ $$\lambda = \frac{1 \pm \sqrt{1 + 80}}{2},$$ $$\lambda = \frac{1 \pm \sqrt{81}}{2},$$ $$\lambda = \frac{1 \pm 9}{2}.$$ Thus: $$\lambda_1 = \frac{1 + 9}{2} = 5, \quad \lambda_2 = \frac{1 - 9}{2} = -4.$$ --- ### Step 4: Classify the Equilibrium Point Since the eigenvalues $$\lambda_1 = 5$$ and $$\lambda_2 = -4$$ have opposite signs, the equilibrium point is a **saddle point**. --- ### Final Answer: The correct classification is **Saddle point**. --- Would you like a detailed explanation of any step? ### Related Questions: 1. What is the significance of the Jacobian matrix in stability analysis? 2. How do the signs of eigenvalues determine the behavior of equilibrium points? 3. What does it mean for an equilibrium point to be a "spiral sink"? 4. How would the analysis change if both eigenvalues were positive? 5. Can you determine stability without explicitly solving for eigenvalues? ### Tip: When solving stability problems, always verify the equilibrium point first before proceeding with linearization.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Differential Equations
Equilibrium Points
Jacobian Matrix
Eigenvalues
Formulas
dx/dt = 10 - x^2 - y^2
dy/dt = 3x - y
Jacobian Matrix: J(x, y) = [∂(dx/dt)/∂x ∂(dx/dt)/∂y; ∂(dy/dt)/∂x ∂(dy/dt)/∂y]
Eigenvalues: det(J - λI) = 0
Theorems
Linearization of dynamical systems
Stability analysis using eigenvalues
Suitable Grade Level
Grades 11-12
Related Recommendation
Classifying a Critical Point in a System of Differential Equations
Jacobian Matrix for the System dx/dt = 10 - x^2 - y^2, dy/dt = 3x - y at (1, 3)
Solving the Characteristic Equation for a Jacobian Matrix at Equilibrium
Analyzing Eigenvalues and Equilibrium Points in Direction Fields
Find Critical Points and Solve System of Differential Equations