Math Problem Statement

ompute the circulation of the vector field F=(7cos(−3y))i+(4x2sin(−3y))j around C . Where C is the rectangle with vertices (0,0) ,(2,0) ,(0,2) , and (2,2) .

∮C7cos(−3y) dx+4x2sin(−3y) dy=∫x2x1∫y2y1

functionsequation editor dy dx

where

x1=

functionsequation editor x2=

functionsequation editor y1=

functionsequation editor y2=

functionsequation editor

Evaluate the double integral to find: ∮C7cos(−3y) dx+4x2sin(−3y) dy=

functionsequation editor

Solution

To compute the circulation of the vector field F around the rectangle CC, we apply Green's Theorem:

CFdr=R(QxPy)dA\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA

where F=Pi+Qj\mathbf{F} = P \mathbf{i} + Q \mathbf{j}, with P=7cos(3y)P = 7\cos(-3y) and Q=4x2sin(3y)Q = 4x^2 \sin(-3y). The region RR is the rectangle with vertices (0,0)(0,0), (2,0)(2,0), (0,2)(0,2), and (2,2)(2,2).


Step 1: Compute Qx\frac{\partial Q}{\partial x} and Py\frac{\partial P}{\partial y}

Qx=x(4x2sin(3y))=8xsin(3y)\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left( 4x^2 \sin(-3y) \right) = 8x \sin(-3y)

Py=y(7cos(3y))=7(3)sin(3y)=21sin(3y)\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left( 7\cos(-3y) \right) = 7 \cdot (-3) \sin(-3y) = -21\sin(-3y)

Thus, QxPy=8xsin(3y)(21sin(3y))=8xsin(3y)+21sin(3y)\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 8x \sin(-3y) - (-21\sin(-3y)) = 8x \sin(-3y) + 21\sin(-3y) QxPy=sin(3y)(8x+21)\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \sin(-3y)(8x + 21)


Step 2: Set up the double integral

The bounds of integration for RR are: [ x \in [0, 2], \quad y \in [0, 2] ]

The double integral becomes: R(QxPy)dxdy=0202sin(3y)(8x+21)dxdy\iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx\,dy = \int_0^2 \int_0^2 \sin(-3y)(8x + 21) \, dx\,dy


Step 3: Evaluate the inner integral with respect to xx

02(8x+21)dx=028xdx+0221dx\int_0^2 (8x + 21) \, dx = \int_0^2 8x \, dx + \int_0^2 21 \, dx

028xdx=8[x22]02=82=16,0221dx=212=42\int_0^2 8x \, dx = 8 \left[ \frac{x^2}{2} \right]_0^2 = 8 \cdot 2 = 16, \quad \int_0^2 21 \, dx = 21 \cdot 2 = 42

02(8x+21)dx=16+42=58\int_0^2 (8x + 21) \, dx = 16 + 42 = 58

Thus, 02sin(3y)(8x+21)dx=58sin(3y)\int_0^2 \sin(-3y)(8x + 21) \, dx = 58 \sin(-3y)


Step 4: Evaluate the outer integral with respect to yy

0258sin(3y)dy=5802sin(3y)dy\int_0^2 58 \sin(-3y) \, dy = 58 \int_0^2 \sin(-3y) \, dy

The integral of sin(3y)\sin(-3y) is: sin(3y)dy=cos(3y)3=13cos(3y)\int \sin(-3y) \, dy = \frac{-\cos(-3y)}{-3} = -\frac{1}{3} \cos(-3y)

Evaluate from y=0y = 0 to y=2y = 2: 02sin(3y)dy=13[cos(3y)]02=13(cos(6)cos(0))\int_0^2 \sin(-3y) \, dy = -\frac{1}{3} \left[ \cos(-3y) \right]_0^2 = -\frac{1}{3} \left( \cos(-6) - \cos(0) \right)

cos(0)=1,cos(6) is a known value (can compute numerically if needed).\cos(0) = 1, \quad \cos(-6) \text{ is a known value (can compute numerically if needed)}.


Step 5: Multiply and finalize

Combining the results: CFdr=5813(cos(6)1)\oint_C \mathbf{F} \cdot d\mathbf{r} = 58 \cdot -\frac{1}{3} \left( \cos(-6) - 1 \right)

Numerical computation or exact trigonometric values would complete the solution. Let me know if you'd like the detailed computation finalized.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Fields
Green's Theorem
Double Integrals
Circulation

Formulas

Green's Theorem: ∮C F · dr = ∫∫R (∂Q/∂x - ∂P/∂y) dA
∂Q/∂x = 8x sin(-3y)
∂P/∂y = -21 sin(-3y)

Theorems

Green's Theorem

Suitable Grade Level

Grades 11-12