Math Problem Statement
Дано: Векторное поле 𝑎
𝑦 2 𝑖 − 𝑥 2 𝑗 + 𝑧 𝑘 .
Необходимо найти циркуляцию векторного поля вдоль кривой 𝐿 , которая получается при пересечении поверхности ( 𝑦 + 𝑧 ) 2
4 − 𝑥 с координатными плоскостями, используя теорему Стокса.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Fields
Circulation
Stokes' Theorem
Surface Integrals
Curl of a Vector Field
Parametric Equations
Polar Coordinates
Formulas
Stokes' Theorem: ∮ₗ a · dr = ∬ₛ (∇ × a) · n dS
Curl of a Vector Field: ∇ × a = (∂/∂x, ∂/∂y, ∂/∂z) × (a₁, a₂, a₃)
Theorems
Stokes' Theorem
Suitable Grade Level
Grades 11-12, University Level
Related Recommendation
Find Circulation of Vector Field Using Line Integral and Stokes' Theorem
Using Green's Theorem to Calculate Circulation of a Vector Field
Circulation of Vector Field F=(7cos(−3y))i+(4x²sin(−3y))j Using Green's Theorem
Stokes' Theorem: Surface Integral of xyi + (x^2 + y^2)j over a Parabolic Curve
Verify Stokes' Theorem for Vector Field F = x i + z² j + y² k in the First Octant