Math Problem Statement

A circle with center 𝑂 O and radius π‘Ÿ r intersects another circle with center 𝑃 P and radius 𝑠 s at two points 𝐴 A and 𝐡 B. The line segment 𝑂 𝑃 OP intersects the circle with center 𝑂 O at point 𝐢 C. If the length of 𝑂 𝑃 OP is 6, the length of 𝑂 𝐢 OC is 2, and the angle ∠ 𝐴 𝑂 𝑃 ∠AOP is 6 0 ∘ 60 ∘ , find the value of log ⁑ 𝑒 ( π‘Ÿ 𝑠 ) log e ​ ( s r ​ ).

Solution

Given:

  • OP=6OP = 6
  • OC=2OC = 2
  • ∠AOP=60∘\angle AOP = 60^\circ

We need to find log⁑e(sr)\log_e \left( \frac{s}{r} \right).

Solution:

  1. Set Up Triangle β–³OCP\triangle OCP: Since CC is a point on the circle with center OO, OCOC is a radius of this circle. Therefore, r=OC=2r = OC = 2.

  2. Applying the Cosine Rule in β–³OCP\triangle OCP: We know:

    • OP=6OP = 6
    • ∠OCP=60∘\angle OCP = 60^\circ
    • OC=2OC = 2

    Let CP=sCP = s. Using the cosine rule in β–³OCP\triangle OCP: s2=r2+OP2βˆ’2β‹…rβ‹…OPβ‹…cos⁑(60∘)s^2 = r^2 + OP^2 - 2 \cdot r \cdot OP \cdot \cos(60^\circ)

  3. Plugging in Values: Substitute r=2r = 2, OP=6OP = 6, and cos⁑(60∘)=12\cos(60^\circ) = \frac{1}{2}: s2=22+62βˆ’2β‹…2β‹…6β‹…12s^2 = 2^2 + 6^2 - 2 \cdot 2 \cdot 6 \cdot \frac{1}{2} Simplify each term: s2=4+36βˆ’2β‹…2β‹…6β‹…12s^2 = 4 + 36 - 2 \cdot 2 \cdot 6 \cdot \frac{1}{2}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Trigonometry
Circles
Logarithms

Formulas

Cosine rule: c^2 = a^2 + b^2 - 2ab * cos(ΞΈ)
Logarithmic function: log_e(x)

Theorems

Cosine Rule

Suitable Grade Level

Grades 10-12