Math Problem Statement

Find the coordinates of the center of mass of the following solid with variable density. The interior of the prism formed by z = x, x = 2, y = 4, and the coordinate planes with p(x,y,z)=1+y. The center of mass is located at (Type exact answers.)

Solution

To find the center of mass (xcm,ycm,zcm)(x_{\text{cm}}, y_{\text{cm}}, z_{\text{cm}}) of the solid, we need to:

  1. Set up the solid’s boundaries: The solid is bounded by:

    • z=xz = x (the slanted plane)
    • x=2x = 2 (the vertical plane)
    • y=4y = 4 (the vertical plane)
    • The coordinate planes (the xyxy-, xzxz-, and yzyz-planes, i.e., x=0x = 0, y=0y = 0, z=0z = 0).

    This gives the solid's limits:

    • 0x20 \leq x \leq 2
    • 0y40 \leq y \leq 4
    • 0zx0 \leq z \leq x (because of the plane z=xz = x).
  2. Density function: The density function is given by ρ(x,y,z)=1+y\rho(x, y, z) = 1 + y.

  3. Mass of the solid: The total mass MM of the solid is given by the triple integral: M=02040xρ(x,y,z)dzdydxM = \int_0^2 \int_0^4 \int_0^x \rho(x, y, z) \, dz \, dy \, dx Substituting ρ(x,y,z)=1+y\rho(x, y, z) = 1 + y, we have: M=02040x(1+y)dzdydxM = \int_0^2 \int_0^4 \int_0^x (1 + y) \, dz \, dy \, dx

  4. Coordinates of the center of mass:

    • xcm=1M02040xxρ(x,y,z)dzdydxx_{\text{cm}} = \frac{1}{M} \int_0^2 \int_0^4 \int_0^x x \rho(x, y, z) \, dz \, dy \, dx
    • ycm=1M02040xyρ(x,y,z)dzdydxy_{\text{cm}} = \frac{1}{M} \int_0^2 \int_0^4 \int_0^x y \rho(x, y, z) \, dz \, dy \, dx
    • zcm=1M02040xzρ(x,y,z)dzdydxz_{\text{cm}} = \frac{1}{M} \int_0^2 \int_0^4 \int_0^x z \rho(x, y, z) \, dz \, dy \, dx

Step-by-step solution:

1. Find the total mass MM:

M=02040x(1+y)dzdydxM = \int_0^2 \int_0^4 \int_0^x (1 + y) \, dz \, dy \, dx The integral with respect to zz is straightforward: 0x(1+y)dz=(1+y)x\int_0^x (1 + y) \, dz = (1 + y)x Now, the mass becomes: M=0204(1+y)xdydxM = \int_0^2 \int_0^4 (1 + y)x \, dy \, dx Expanding and integrating with respect to yy: M=0204(x+xy)dydx=02[4x+8x]dx=0212xdx=6x202=24M = \int_0^2 \int_0^4 (x + xy) \, dy \, dx = \int_0^2 \left[ 4x + 8x \right] \, dx = \int_0^2 12x \, dx = 6x^2 \big|_0^2 = 24 So, the total mass is M=24M = 24.

2. Find xcmx_{\text{cm}}:

xcm=1M02040xx(1+y)dzdydxx_{\text{cm}} = \frac{1}{M} \int_0^2 \int_0^4 \int_0^x x(1 + y) \, dz \, dy \, dx Following similar steps as for MM, the integral becomes: xcm=1240204x2(1+y)dydx=12402[4x2+8x2]dx=1240212x2dx=1248x302=6424=83x_{\text{cm}} = \frac{1}{24} \int_0^2 \int_0^4 x^2(1 + y) \, dy \, dx = \frac{1}{24} \int_0^2 \left[ 4x^2 + 8x^2 \right] \, dx = \frac{1}{24} \int_0^2 12x^2 \, dx = \frac{1}{24} \cdot 8x^3 \big|_0^2 = \frac{64}{24} = \frac{8}{3}

3. Find ycmy_{\text{cm}}:

ycm=1M02040xy(1+y)dzdydxy_{\text{cm}} = \frac{1}{M} \int_0^2 \int_0^4 \int_0^x y(1 + y) \, dz \, dy \, dx Integrating in the same manner: [ y_{\text{cm}} = \frac{1}{24} \int_0^2 \int_0^4 y(1 + y)x , dy , dx = \frac{1}{24} \int_0^2 \left[ \frac{32}{3} x \right] dx = \frac{1}{24} \cdot \frac{64}{3} \cdot \frac{4}{2} = \frac... Final

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Center of Mass
Triple Integrals
Variable Density Functions

Formulas

M = ∫∫∫ ρ(x,y,z) dz dy dx (total mass)
x_cm = (1/M) ∫∫∫ xρ(x,y,z) dz dy dx
y_cm = (1/M) ∫∫∫ yρ(x,y,z) dz dy dx
z_cm = (1/M) ∫∫∫ zρ(x,y,z) dz dy dx

Theorems

Center of Mass Formula
Triple Integration

Suitable Grade Level

Undergraduate