Math Problem Statement

E is the tetrahedron bounded by the planes x = 0, y = 0, z = 0, x + y + z = 1 and density ρ(x, y, z) = y. Find the center of mass of the solid E.

Solution

The problem involves finding the center of mass for a tetrahedron EE, which is bounded by the planes x=0x = 0, y=0y = 0, z=0z = 0, and x+y+z=1x + y + z = 1. The density function is ρ(x,y,z)=y\rho(x, y, z) = y. The goal is to find the center of mass for this solid.

Steps to Find the Center of Mass

  1. Center of Mass Formula: The center of mass for a solid with a density function ρ(x,y,z)\rho(x, y, z) is given by: (x,y,z)=(1MExρ(x,y,z)dV,1MEyρ(x,y,z)dV,1MEzρ(x,y,z)dV)\left( \overline{x}, \overline{y}, \overline{z} \right) = \left( \frac{1}{M} \int \int \int_E x \rho(x, y, z) \, dV, \frac{1}{M} \int \int \int_E y \rho(x, y, z) \, dV, \frac{1}{M} \int \int \int_E z \rho(x, y, z) \, dV \right) where MM is the total mass of the solid: M=Eρ(x,y,z)dVM = \int \int \int_E \rho(x, y, z) \, dV

  2. Volume of the Tetrahedron: The region EE is the tetrahedron bounded by the planes x=0x = 0, y=0y = 0, z=0z = 0, and x+y+z=1x + y + z = 1. The vertices of the tetrahedron are: (0,0,0),(1,0,0),(0,1,0),(0,0,1)(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) The volume of this tetrahedron can be computed using the formula: Volume=13!×base area×height\text{Volume} = \frac{1}{3!} \times \text{base area} \times \text{height} The volume is 16\frac{1}{6}.

  3. Mass Calculation: The mass MM is given by the integral of the density function over the region EE. Since ρ(x,y,z)=y\rho(x, y, z) = y, we integrate as follows: M=0101x01xyydzdydxM = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} y \, dz \, dy \, dx

  4. Center of Mass Coordinates: To compute the coordinates of the center of mass, we will evaluate the integrals:

    • x=1M0101x01xyxydzdydx\overline{x} = \frac{1}{M} \int_0^1 \int_0^{1-x} \int_0^{1-x-y} x \cdot y \, dz \, dy \, dx
    • y=1M0101x01xyy2dzdydx\overline{y} = \frac{1}{M} \int_0^1 \int_0^{1-x} \int_0^{1-x-y} y^2 \, dz \, dy \, dx
    • z=1M0101x01xyzydzdydx\overline{z} = \frac{1}{M} \int_0^1 \int_0^{1-x} \int_0^{1-x-y} z \cdot y \, dz \, dy \, dx

Let me proceed with the calculations now. sympy import symbols, integrate

Define the variables

x, y, z = symbols('x y z')

Define the density function

density = y

Define the limits for the region E (tetrahedron)

The region E is bounded by x + y + z =

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Triple Integrals
Center of Mass
Density Functions
Tetrahedron Volume

Formulas

Center of mass formula: (x̄, ȳ, z̄) = (1/M) ∫∫∫_E xρ(x, y, z) dV, (1/M) ∫∫∫_E yρ(x, y, z) dV, (1/M) ∫∫∫_E zρ(x, y, z) dV
Mass formula: M = ∫∫∫_E ρ(x, y, z) dV
Volume of tetrahedron: Volume = (1/6)

Theorems

Center of mass for a solid with density function
Triple integral for mass and center of mass calculation

Suitable Grade Level

Grades 11-12, College Calculus