Math Problem Statement

A lamina occupies the part of the disk x2 + y2 ≤ 64 in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis. (x, y) =

Solution

To find the center of mass (x,y)(x, y) of a lamina occupying the region x2+y264x^2 + y^2 \leq 64 in the first quadrant, with density proportional to the distance from the xx-axis, we can follow these steps:

  1. Define the Region and Density Function:

    • The lamina occupies the quarter disk in the first quadrant, where x0x \geq 0, y0y \geq 0, and x2+y264x^2 + y^2 \leq 64.
    • The density function ρ(x,y)\rho(x, y) is proportional to the distance from the xx-axis. Let ρ(x,y)=ky\rho(x, y) = k \cdot y, where kk is a constant of proportionality.
  2. Set Up the Center of Mass Formulas:

    • The coordinates of the center of mass (x,y)(x, y) are given by: x=Rxρ(x,y)dARρ(x,y)dA,y=Ryρ(x,y)dARρ(x,y)dAx = \frac{\iint_R x \rho(x, y) \, dA}{\iint_R \rho(x, y) \, dA}, \quad y = \frac{\iint_R y \rho(x, y) \, dA}{\iint_R \rho(x, y) \, dA}
    • Since ρ(x,y)=ky\rho(x, y) = k \cdot y, the expressions become: x=Rx(ky)dARkydA,y=Ry(ky)dARkydAx = \frac{\iint_R x \cdot (k \cdot y) \, dA}{\iint_R k \cdot y \, dA}, \quad y = \frac{\iint_R y \cdot (k \cdot y) \, dA}{\iint_R k \cdot y \, dA}
    • The factor kk will cancel out in both expressions, simplifying the calculations.
  3. Convert to Polar Coordinates:

    • Using polar coordinates x=rcosθx = r \cos \theta and y=rsinθy = r \sin \theta, we have dA=rdrdθdA = r \, dr \, d\theta.
    • The region RR corresponds to 0r80 \leq r \leq 8 and 0θπ20 \leq \theta \leq \frac{\pi}{2} (first quadrant).
    • Substitute ρ(x,y)=ky=krsinθ\rho(x, y) = k \cdot y = k \cdot r \sin \theta.
  4. Calculate RkydA\iint_R k \cdot y \, dA (Total Mass): RkydA=Rkrsinθrdrdθ=k0π208r2sinθdrdθ\iint_R k \cdot y \, dA = \iint_R k \cdot r \sin \theta \cdot r \, dr \, d\theta = k \int_0^{\frac{\pi}{2}} \int_0^8 r^2 \sin \theta \, dr \, d\theta

    • Integrating with respect to rr: =k0π2sinθ08r2drdθ=k0π2sinθ833dθ=512k30π2sinθdθ= k \int_0^{\frac{\pi}{2}} \sin \theta \int_0^8 r^2 \, dr \, d\theta = k \int_0^{\frac{\pi}{2}} \sin \theta \cdot \frac{8^3}{3} \, d\theta = \frac{512k}{3} \int_0^{\frac{\pi}{2}} \sin \theta \, d\theta
    • Integrating with respect to θ\theta: =512k3[cosθ]0π2=512k3(1)=512k3= \frac{512k}{3} \cdot \left[ -\cos \theta \right]_0^{\frac{\pi}{2}} = \frac{512k}{3} \cdot (1) = \frac{512k}{3}
  5. Calculate xx Coordinate of the Center of Mass: x=Rxρ(x,y)dARρ(x,y)dA=RxkydA512k3=Rkrcosθrsinθrdrdθ512k3x = \frac{\iint_R x \rho(x, y) \, dA}{\iint_R \rho(x, y) \, dA} = \frac{\iint_R x \cdot k \cdot y \, dA}{\frac{512k}{3}} = \frac{\iint_R k \cdot r \cos \theta \cdot r \sin \theta \cdot r \, dr \, d\theta}{\frac{512k}{3}}

    • Simplifying: =k0π208r3cosθsinθdrdθ512k3= \frac{k \int_0^{\frac{\pi}{2}} \int_0^8 r^3 \cos \theta \sin \theta \, dr \, d\theta}{\frac{512k}{3}}
    • Integrating with respect to rr: =k0π2cosθsinθ844dθ512k3=4096k40π2cosθsinθdθ= \frac{k \int_0^{\frac{\pi}{2}} \cos \theta \sin \theta \cdot \frac{8^4}{4} \, d\theta}{\frac{512k}{3}} = \frac{4096k}{4} \int_0^{\frac{\pi}{2}} \cos \theta \sin \theta \, d\theta
      • Use the identity sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta:

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Center of Mass
Polar Coordinates
Density Functions

Formulas

x = \frac{\iint_R x \rho(x, y) \, dA}{\iint_R \rho(x, y) \, dA}
y = \frac{\iint_R y \rho(x, y) \, dA}{\iint_R \rho(x, y) \, dA}
\rho(x, y) = k \cdot y

Theorems

Center of Mass for Continuous Bodies
Polar Coordinate Transformation

Suitable Grade Level

University Level