Math Problem Statement

Given the following values: n = 12, Σx_i = 460.53, Σy_i = -6349.7, Σx_i^2 = 17875.1, Σy_i^2 = 3421892, Σx_i y_i = -246677, calculate the slope (β1), y-intercept (β0) and estimate the true mean value of Y when x = 41.

Solution

To determine the slope β^1\hat{\beta}_1 and y-intercept β^0\hat{\beta}_0 for the regression line, we use the following formulas:

β^1=n(xiyi)(xi)(yi)n(xi2)(xi)2\hat{\beta}_1 = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n(\sum x_i^2) - (\sum x_i)^2}

β^0=(yi)β^1(xi)n\hat{\beta}_0 = \frac{(\sum y_i) - \hat{\beta}_1(\sum x_i)}{n}

Given:

  • n=12n = 12
  • xi=460.53\sum x_i = 460.53
  • yi=6349.7\sum y_i = -6349.7
  • xi2=17875.1\sum x_i^2 = 17875.1
  • yi2=3421892\sum y_i^2 = 3421892 (not needed for these calculations)
  • xiyi=246677\sum x_i y_i = -246677

Calculate β^1\hat{\beta}_1:

β^1=12(246677)(460.53)(6349.7)12(17875.1)(460.53)2\hat{\beta}_1 = \frac{12(-246677) - (460.53)(-6349.7)}{12(17875.1) - (460.53)^2}

Calculate the numerator and the denominator separately, then solve for β^1\hat{\beta}_1.

Calculate β^0\hat{\beta}_0:

Plug β^1\hat{\beta}_1 into the formula for β^0\hat{\beta}_0:

β^0=(6349.7)β^1(460.53)12\hat{\beta}_0 = \frac{(-6349.7) - \hat{\beta}_1(460.53)}{12}

Finally, estimate the true mean value of YY when x=41x = 41 using:

Y^=β^0+β^1(41)\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1(41)

Let's calculate these values:

Calculation:

First, calculate β^1\hat{\beta}_1:

  1. Numerator: 12(246677)(460.53)(6349.7)=2960124+2930344.121=29779.87912(-246677) - (460.53)(-6349.7) = -2960124 + 2930344.121 = -29779.879

  2. Denominator: 12(17875.1)(460.53)2=214501.2212088.2809=2412.919112(17875.1) - (460.53)^2 = 214501.2 - 212088.2809 = 2412.9191

  3. So, β^1=29779.8792412.919112.3444\hat{\beta}_1 = \frac{-29779.879}{2412.9191} \approx -12.3444

Now, calculate β^0\hat{\beta}_0:

β^0=(6349.7)(12.3444)(460.53)12=6349.7+5684.73285212=664.9671481255.4139\hat{\beta}_0 = \frac{(-6349.7) - (-12.3444)(460.53)}{12} = \frac{-6349.7 + 5684.732852}{12} = \frac{-664.967148}{12} \approx -55.4139

Finally, estimate YY for x=41x = 41:

Y^=55.4139+(12.3444)(41)=55.4139506.1234=561.5373\hat{Y} = -55.4139 + (-12.3444)(41) = -55.4139 - 506.1234 = -561.5373

Answers:

β^112.3444\hat{\beta}_1 \approx -12.3444

β^055.4139\hat{\beta}_0 \approx -55.4139

Estimate when x=41x = 41: 561.54-561.54

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Regression
Statistics
Slope and Intercept Calculation

Formulas

β1 = (n(Σx_i y_i) - (Σx_i)(Σy_i)) / (n(Σx_i^2) - (Σx_i)^2)
β0 = (Σy_i - β1(Σx_i)) / n
Y_hat = β0 + β1(x)

Theorems

Least Squares Method

Suitable Grade Level

Grades 11-12