To determine the slope β^1 and y-intercept β^0 for the regression line, we use the following formulas:
β^1=n(∑xi2)−(∑xi)2n(∑xiyi)−(∑xi)(∑yi)
β^0=n(∑yi)−β^1(∑xi)
Given:
- n=12
- ∑xi=460.53
- ∑yi=−6349.7
- ∑xi2=17875.1
- ∑yi2=3421892 (not needed for these calculations)
- ∑xiyi=−246677
Calculate β^1:
β^1=12(17875.1)−(460.53)212(−246677)−(460.53)(−6349.7)
Calculate the numerator and the denominator separately, then solve for β^1.
Calculate β^0:
Plug β^1 into the formula for β^0:
β^0=12(−6349.7)−β^1(460.53)
Finally, estimate the true mean value of Y when x=41 using:
Y^=β^0+β^1(41)
Let's calculate these values:
Calculation:
First, calculate β^1:
-
Numerator:
12(−246677)−(460.53)(−6349.7)=−2960124+2930344.121=−29779.879
-
Denominator:
12(17875.1)−(460.53)2=214501.2−212088.2809=2412.9191
-
So, β^1=2412.9191−29779.879≈−12.3444
Now, calculate β^0:
β^0=12(−6349.7)−(−12.3444)(460.53)=12−6349.7+5684.732852=12−664.967148≈−55.4139
Finally, estimate Y for x=41:
Y^=−55.4139+(−12.3444)(41)=−55.4139−506.1234=−561.5373
Answers:
β^1≈−12.3444
β^0≈−55.4139
Estimate when x=41: −561.54