Math Problem Statement

Akan disusun nomor telepon rumah yang terdiri atas 8 angka, dengan ketentuan angka pertama tidak boleh angka 0. Tentukan banyaknya nomor telepon yang dapat dibuat dari angka-angka 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, jika: a. Angka-angka boleh berulang b. Tidak boleh ada angka yang diulang c. Hanya angka pertama yang tidak boleh diulang.

Solution

The problem is about forming an 8-digit phone number using digits 0 through 9, under certain conditions. Let's break down and solve each part:

Problem Analysis:

  1. The phone number must be 8 digits long.
  2. The first digit cannot be 0 (it should be 1 to 9).

Solutions:

Let's calculate the number of phone numbers under each scenario:

a. Angka-angka boleh berulang (Digits can repeat)

  • For the first digit, we have 9 options (1-9).
  • For each of the remaining 7 digits, all 10 digits (0-9) can be used.

Thus, the number of phone numbers is: 9×107=90,000,0009 \times 10^7 = 90,000,000

b. Tidak boleh ada angka yang diulang (No digit repetition)

  • For the first digit, we have 9 options (1-9).
  • For the second digit, we have 9 options (0-9, excluding the first digit).
  • For the third digit, 8 options remain, and so on.

So, the number of phone numbers is: 9×9×8×7×6×5×4×3=9×9!/(97)!9 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 = 9 \times 9! / (9 - 7)! Calculating: 9×9×8×7×6×5×4×3=9×181,440=1,632,9609 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 = 9 \times 181,440 = 1,632,960

c. Hanya angka pertama yang tidak boleh diulang (Only the first digit cannot repeat)

  • For the first digit, we have 9 options (1-9).
  • For each of the remaining 7 digits, any of the 10 digits can be used, including the first digit.

Thus, the number of phone numbers is: 9×107=90,000,0009 \times 10^7 = 90,000,000

Summary:

  • (a): 90,000,000 phone numbers
  • (b): 1,632,960 phone numbers
  • (c): 90,000,000 phone numbers

Would you like more details on any of these solutions or have any specific questions? Here are 5 related questions for further exploration:

  1. How would the calculation change if the phone number length were increased to 9 digits?
  2. What would happen if the first digit also allowed 0?
  3. Can we derive a general formula for cases with varying digit restrictions?
  4. What is the probability of selecting a number without repetition if chosen randomly?
  5. How many unique phone numbers can be generated if only certain digits are allowed?

Tip: When counting possibilities, always account for restrictions first (e.g., "no repetition") before applying combinatorics.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Combinatorics
Permutations
Counting Principles

Formulas

a. 9 × 10^7
b. 9 × 9 × 8 × 7 × 6 × 5 × 4 × 3
c. 9 × 10^7

Theorems

Fundamental Principle of Counting

Suitable Grade Level

High School