Math Problem Statement
Un mobile M (une voiture) se déplace suivant un axe X’OX. Son digramme de vitesse est donné sur la figure ci-dessous. On suppose qu’à l’instant t=0 (s), x(0)= -1 (m). A partir du diagramme :
- Calculer les positions du mobile aux instants 1(s) et 4 (s).
- Retrouver la distance parcourue pendant les quatre premières secondes. Quelle est sa vitesse scalaire moyenne.
- Calculer la vitesse moyenne entre les instants 1(s) et 4 (s).
- Déterminer son accélération instantanée à l’ instant t= 1(s)
- Déterminer son accélération moyenne sur l’intervalle [1s, 5s].
- Pour décrire le mouvement du mobile, préciser : a- La vitesse à l’instant initial t=0 (s). b- Le sens de son mouvement à l’instant initial. c- L’instant et la position auxquelles il rebrousse le chemin.
- Donner les différentes phases du mouvement et leurs natures
- Retrouver l’équation horaire du mouvement et tracer le digramme des espaces.
Solution
To tackle this problem, we need to carefully analyze the velocity-time graph (speed diagram) and use it to find the required kinematic information. Here's a structured approach to solve each part:
Given Data:
- : m
- We’ll interpret specific values from the velocity-time graph to solve the problem.
Solutions:
1. Calculating the Position of the Mobile at s and s
To find the position at s and s, we use the relationship between velocity and displacement: We need to interpret the area under the velocity curve between s and s, and between s and s. Positive areas represent displacement in the positive -direction, while negative areas indicate displacement in the opposite direction.
2. Total Distance Traveled and Average Scalar Speed in the First 4 Seconds
The distance is the sum of absolute values of the areas under the curve from s to s. To find the average speed, use:
3. Average Velocity Between s and s
The average velocity over the interval from ( t = 1 \
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Kinematics
Velocity
Displacement
Acceleration
Formulas
Position formula: x(t) = x(0) + ∫ v(t) dt
Average speed formula: Average speed = Total distance / Total time
Average velocity formula: Average velocity = (x(t2) - x(t1)) / (t2 - t1)
Instantaneous acceleration: a = dv/dt
Average acceleration formula: Average acceleration = (v(t2) - v(t1)) / (t2 - t1)
Theorems
Fundamental Theorem of Calculus
Suitable Grade Level
Grades 10-12
Related Recommendation
Analyzing Motion Using Position-Time Data for a Car
Kinematics: Calculating Position, Distance, Velocity, and Acceleration for a Mobile on the X-Axis
Solve a Kinematics Problem with Varying Acceleration Over a Distance
Kinematics: Calculating Distance, Average Velocity, and Acceleration from a Velocity-Time Graph
Kinematics: Analyzing Motion with Velocity-Time Graphs