Math Problem Statement

Un mobile M (une voiture) se déplace suivant un axe X’OX. Son digramme de vitesse est donné sur la figure ci-dessous. On suppose qu’à l’instant t=0 (s), x(0)= -1 (m). A partir du diagramme :

  1. Calculer les positions du mobile aux instants 1(s) et 4 (s).
  2. Retrouver la distance parcourue pendant les quatre premières secondes. Quelle est sa vitesse scalaire moyenne.
  3. Calculer la vitesse moyenne entre les instants 1(s) et 4 (s).
  4. Déterminer son accélération instantanée à l’ instant t= 1(s)
  5. Déterminer son accélération moyenne sur l’intervalle [1s, 5s].
  6. Pour décrire le mouvement du mobile, préciser : a- La vitesse à l’instant initial t=0 (s). b- Le sens de son mouvement à l’instant initial. c- L’instant et la position auxquelles il rebrousse le chemin.
  7. Donner les différentes phases du mouvement et leurs natures
  8. Retrouver l’équation horaire du mouvement et tracer le digramme des espaces.

Solution

To tackle this problem, we need to carefully analyze the velocity-time graph (speed diagram) and use it to find the required kinematic information. Here's a structured approach to solve each part:

Given Data:

  • t=0t = 0: x(0)=1x(0) = -1 m
  • We’ll interpret specific values from the velocity-time graph to solve the problem.

Solutions:

1. Calculating the Position of the Mobile at t=1t = 1 s and t=4t = 4 s

To find the position at t=1t = 1 s and t=4t = 4 s, we use the relationship between velocity and displacement: x(t)=x(0)+0tv(t)dtx(t) = x(0) + \int_{0}^{t} v(t) \, dt We need to interpret the area under the velocity curve between t=0t = 0 s and t=1t = 1 s, and between t=0t = 0 s and t=4t = 4 s. Positive areas represent displacement in the positive xx-direction, while negative areas indicate displacement in the opposite direction.

2. Total Distance Traveled and Average Scalar Speed in the First 4 Seconds

The distance is the sum of absolute values of the areas under the curve from t=0t = 0 s to t=4t = 4 s. To find the average speed, use: Average speed=Total distance traveledTotal time=Total distance4s\text{Average speed} = \frac{\text{Total distance traveled}}{\text{Total time}} = \frac{\text{Total distance}}{4 \, \text{s}}

3. Average Velocity Between t=1t = 1 s and t=4t = 4 s

The average velocity over the interval from ( t = 1 \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Kinematics
Velocity
Displacement
Acceleration

Formulas

Position formula: x(t) = x(0) + ∫ v(t) dt
Average speed formula: Average speed = Total distance / Total time
Average velocity formula: Average velocity = (x(t2) - x(t1)) / (t2 - t1)
Instantaneous acceleration: a = dv/dt
Average acceleration formula: Average acceleration = (v(t2) - v(t1)) / (t2 - t1)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 10-12