Math Problem Statement

(a) Consider the population 3, 4, 9, 14, and 20. The z-scores for each of the five data values are 

z3 ≈ −1.101,   z4 ≈ −0.944,   z9 ≈ −0.157,   z14 ≈ 0.629,   and z20 ≈ 1.573.

 Find the mean and the population standard deviation of 

z3,   z4,   z9,   z14,   and z20.

 (Round answers to the nearest whole number.)

mean    

standard deviation    

(b) Consider the population 2, 6, 12, 17, 22, and 25. The z-scores for each of the six data values are 

z2 ≈ −1.459,   z6 ≈ −0.973,   z12 ≈ −0.243,   z17 ≈ 0.365,   z22 ≈ 0.973,   and z25 ≈ 1.337.

 Find the mean and the population standard deviation of 

z2,   z6,   z12,   z17,   z22,   and z25.

 (Round answers to the nearest whole number.)

mean    

standard deviation    

Solution

Part (a)

To find the mean and standard deviation of the given z-scores:

z31.101z3 \approx -1.101 z40.944z4 \approx -0.944 z90.157z9 \approx -0.157 z140.629z14 \approx 0.629 z201.573z20 \approx 1.573

Mean of z-scores

The mean (μz\mu_z) of the z-scores is given by the average of the z-scores:

μz=z3+z4+z9+z14+z205\mu_z = \frac{z3 + z4 + z9 + z14 + z20}{5}

Substitute the given values:

μz=1.1010.9440.157+0.629+1.5735\mu_z = \frac{-1.101 - 0.944 - 0.157 + 0.629 + 1.573}{5}

μz=1.1010.9440.157+0.629+1.5735\mu_z = \frac{-1.101 - 0.944 - 0.157 + 0.629 + 1.573}{5}

μz=1.573+2.2025\mu_z = \frac{-1.573 + 2.202}{5}

μz=0.6295\mu_z = \frac{0.629}{5}

μz=0.1258\mu_z = 0.1258

μz0(rounded to the nearest whole number)\mu_z \approx 0 \, (\text{rounded to the nearest whole number})

Standard Deviation of z-scores

The standard deviation (σz\sigma_z) of the z-scores is given by:

σz=(z3μz)2+(z4μz)2+(z9μz)2+(z14μz)2+(z20μz)25\sigma_z = \sqrt{\frac{(z3 - \mu_z)^2 + (z4 - \mu_z)^2 + (z9 - \mu_z)^2 + (z14 - \mu_z)^2 + (z20 - \mu_z)^2}{5}}

Since μz0\mu_z \approx 0:

σz=(1.101)2+(0.944)2+(0.157)2+(0.629)2+(1.573)25\sigma_z = \sqrt{\frac{(-1.101)^2 + (-0.944)^2 + (-0.157)^2 + (0.629)^2 + (1.573)^2}{5}}

σz=1.212+0.891+0.025+0.396+2.4745\sigma_z = \sqrt{\frac{1.212 + 0.891 + 0.025 + 0.396 + 2.474}{5}}

σz=4.9985\sigma_z = \sqrt{\frac{4.998}{5}}

σz=0.9996\sigma_z = \sqrt{0.9996}

σz1(rounded to the nearest whole number)\sigma_z \approx 1 \, (\text{rounded to the nearest whole number})

Part (b)

To find the mean and standard deviation of the given z-scores:

z21.459z2 \approx -1.459 z60.973z6 \approx -0.973 z120.243z12 \approx -0.243 z170.365z17 \approx 0.365 z220.973z22 \approx 0.973 z251.337z25 \approx 1.337

Mean of z-scores

The mean (μz\mu_z) of the z-scores is given by the average of the z-scores:

μz=z2+z6+z12+z17+z22+z256\mu_z = \frac{z2 + z6 + z12 + z17 + z22 + z25}{6}

Substitute the given values:

μz=1.4590.9730.243+0.365+0.973+1.3376\mu_z = \frac{-1.459 - 0.973 - 0.243 + 0.365 + 0.973 + 1.337}{6}

μz=2.675+2.6756\mu_z = \frac{-2.675 + 2.675}{6}

μz=06\mu_z = \frac{0}{6}

μz=0\mu_z = 0

Standard Deviation of z-scores

The standard deviation (σz\sigma_z) of the z-scores is given by:

σz=(z2μz)2+(z6μz)2+(z12μz)2+(z17μz)2+(z22μz)2+(z25μz)26\sigma_z = \sqrt{\frac{(z2 - \mu_z)^2 + (z6 - \mu_z)^2 + (z12 - \mu_z)^2 + (z17 - \mu_z)^2 + (z22 - \mu_z)^2 + (z25 - \mu_z)^2}{6}}

Since μz0\mu_z \approx 0:

σz=(1.459)2+(0.973)2+(0.243)2+(0.365)2+(0.973)2+(1.337)26\sigma_z = \sqrt{\frac{(-1.459)^2 + (-0.973)^2 + (-0.243)^2 + (0.365)^2 + (0.973)^2 + (1.337)^2}{6}}

σz=2.129+0.947+0.059+0.133+0.947+1.7886\sigma_z = \sqrt{\frac{2.129 + 0.947 + 0.059 + 0.133 + 0.947 + 1.788}{6}}

σz=6.0036\sigma_z = \sqrt{\frac{6.003}{6}}

σz=1.0005\sigma_z = \sqrt{1.0005}

σz1(rounded to the nearest whole number)\sigma_z \approx 1 \, (\text{rounded to the nearest whole number})

Summary

Part (a):

  • Mean: 0
  • Standard Deviation: 1

Part (b):

  • Mean: 0
  • Standard Deviation: 1

Do you want details or have any questions?

Here are 5 numbered questions you can ask:

  1. How do you interpret a z-score in statistics?
  2. Can you explain how to calculate the mean and standard deviation?
  3. What is the significance of the standard deviation in a data set?
  4. How do you find the probability corresponding to a z-score?
  5. What are the properties of the normal distribution?

Tip: The mean of a set of z-scores for a standard normal distribution is always 0, and the standard deviation is always 1.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Z-scores
Mean
Standard Deviation

Formulas

Mean formula
Standard deviation formula

Theorems

-

Suitable Grade Level

Undergraduate