Math Problem Statement

The school cafeteria uses 2 1/3 pounds of cheese for each large pizza. If they make 3 1/2 large pizzas for lunch, how many pounds of cheese do they use?

Solution

To solve the problem in the image, we need to calculate how many pounds of cheese the school cafeteria uses for 3123 \frac{1}{2} large pizzas, given that each large pizza uses 2132 \frac{1}{3} pounds of cheese.

Step 1: Convert mixed numbers to improper fractions

  • 2132 \frac{1}{3} can be written as 73\frac{7}{3}.
  • 3123 \frac{1}{2} can be written as 72\frac{7}{2}.

Step 2: Multiply the amount of cheese per pizza by the number of pizzas

We now multiply 73\frac{7}{3} (cheese per pizza) by 72\frac{7}{2} (number of pizzas):

73×72=496\frac{7}{3} \times \frac{7}{2} = \frac{49}{6}

Step 3: Convert the improper fraction to a mixed number

496=816\frac{49}{6} = 8 \frac{1}{6}

Thus, the school cafeteria will use 8168 \frac{1}{6} pounds of cheese to make 3123 \frac{1}{2} large pizzas.

Would you like any more details or explanations?

Related Questions:

  1. How would the total cheese amount change if the cafeteria made 5 pizzas?
  2. How would you multiply two improper fractions in general?
  3. Can you express 8168 \frac{1}{6} as a decimal?
  4. How much cheese would be needed if each pizza required 3123 \frac{1}{2} pounds of cheese?
  5. How would the solution change if they made 4144 \frac{1}{4} pizzas instead of 3123 \frac{1}{2}?

Tip:

When dealing with mixed numbers, converting them to improper fractions first makes multiplication easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Multiplication of Mixed Numbers

Formulas

Convert mixed numbers to improper fractions
Multiply fractions

Theorems

Fraction Multiplication Theorem

Suitable Grade Level

Grade 6-8