Math Problem Statement

Suppose you are pretraining a BERT model with 8 layers, 768-dim hidden states, 8 attention heads, and a sub-word vocabulary of size 40k. Also, your feed-forward hidden layer is of dimension 3072. What will be the number of parameters of the model? You can ignore the bias terms, and other parameters used corresponding to the final loss computation from the final encoder representation. The BERT model can take at most 512 tokens in the input.

Solution

To calculate the number of parameters in a BERT model, let's break down each part of the architecture:

1. Embedding Layer

The embedding layer consists of:

  • Token Embeddings: Since the vocabulary size is 40,00040,000 and the embedding dimension is 768768, the number of parameters for token embeddings will be: Token Embedding Params=40,000×768=30,720,000\text{Token Embedding Params} = 40,000 \times 768 = 30,720,000

  • Position Embeddings: BERT uses positional embeddings for a sequence of up to 512512 tokens, and the embedding dimension is again 768768: Position Embedding Params=512×768=393,216\text{Position Embedding Params} = 512 \times 768 = 393,216

  • Segment Embeddings: BERT typically uses two segment embeddings (for sentence A and sentence B in NSP tasks), so: Segment Embedding Params=2×768=1,536\text{Segment Embedding Params} = 2 \times 768 = 1,536

Total Embedding Parameters: Total Embedding Params=30,720,000+393,216+1,536=31,114,752\text{Total Embedding Params} = 30,720,000 + 393,216 + 1,536 = 31,114,752

2. Transformer Layers (8 Layers)

Each Transformer layer consists of:

  1. Multi-head Attention:

    • In each layer, we have 8 attention heads, each with a query, key, and value matrix. Each of these matrices transforms the 768-dimensional input to 768/8=96768/8 = 96-dimensional outputs (one per head). So for each head, the number of parameters is 768×96768 \times 96, and there are 3 such matrices (query, key, value) for each head.
    • Additionally, there is an output projection matrix to map back to 768 dimensions.

    Therefore, the number of parameters for multi-head attention per layer is: Attention Params=3×(768×96)×8+(768×768)\text{Attention Params} = 3 \times (768 \times 96) \times 8 + (768 \times 768) Attention Params=3×768×96×8+768×768=1,769,472\text{Attention Params} = 3 \times 768 \times 96 \times 8 + 768 \times 768 = 1,769,472

  2. Feed-Forward Network (FFN):

    • The FFN consists of two linear transformations: from 768 dimensions to 3072 dimensions (the hidden layer), and then back from 3072 to 768 dimensions. FFN Params=(768×3072)+(3072×768)=2,362,368+2,362,368=4,724,736\text{FFN Params} = (768 \times 3072) + (3072 \times 768) = 2,362,368 + 2,362,368 = 4,724,736
  3. Layer Norm and Other Parameters: Typically, Layer Norm would add a small number of parameters, but since we're ignoring bias terms and other small contributions, we'll focus on the main weights.

Total Parameters per Transformer Layer: Total per Layer=1,769,472(Attention)+4,724,736(FFN)=6,494,208\text{Total per Layer} = 1,769,472 (\text{Attention}) + 4,724,736 (\text{FFN}) = 6,494,208

Since there are 8 layers, the total number of parameters for all layers is: Total Transformer Layer Params=6,494,208×8=51,953,664\text{Total Transformer Layer Params} = 6,494,208 \times 8 = 51,953,664

3. Total Number of Parameters

Now, summing up the parameters from the embedding layer and the transformer layers:

Total Params=31,114,752(Embeddings)+51,953,664(Transformer Layers)\text{Total Params} = 31,114,752 (\text{Embeddings}) + 51,953,664 (\text{Transformer Layers}) Total Params=83,068,416\text{Total Params} = 83,068,416

Thus, the total number of parameters in the BERT model is approximately 83 million.


Let me know if you'd like to explore any particular details or have further questions.

Here are 5 related questions:

  1. How does increasing the number of layers affect the total number of parameters?
  2. What role does the dimensionality of the hidden states play in the model's capacity?
  3. How does the size of the vocabulary affect the embedding layer size?
  4. What impact do attention heads have on multi-head attention's parameter count?
  5. How can we reduce the number of parameters without changing the model structure?

Tip: Increasing hidden dimensions significantly increases the parameter count, especially in the feed-forward networks.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Multiplication
Parameter Calculation

Formulas

Token Embedding Params = Vocabulary Size × Embedding Dimension
Position Embedding Params = Sequence Length × Embedding Dimension
Attention Params = (3 × Input Dimension × Head Dimension × Number of Heads) + (Output Dimension × Input Dimension)
FFN Params = (Input Dimension × Hidden Dimension) + (Hidden Dimension × Output Dimension)

Theorems

-

Suitable Grade Level

Graduate Level