Math Problem Statement

求图中的x

求图中的x

Solution

To determine xx in the given triangle, we will proceed as follows:


Step 1: Determine angle ACD\angle ACD

From the diagram, we know that:
ACD+DCB=180 (linear pair of angles).\angle ACD + \angle DCB = 180^\circ \ \text{(linear pair of angles).}
Given DCB=131\angle DCB = 131^\circ, we can calculate ACD\angle ACD:
ACD=180131=49.\angle ACD = 180^\circ - 131^\circ = 49^\circ.

Thus, ACD=49\angle ACD = 49^\circ.


Step 2: Solve for xx using the Law of Sines

In triangle ABCABC, we apply the Law of Sines:
ABsin(ACB)=ACsin(ABC).\frac{AB}{\sin(\angle ACB)} = \frac{AC}{\sin(\angle ABC)}.

We are given:

  • AB=3 cmAB = 3 \ \text{cm},
  • ABC=49\angle ABC = 49^\circ,
  • ( \angle ACD

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Law of Sines
Angle Relationships

Formulas

Law of Sines: a / sin(A) = b / sin(B)
Linear Pair of Angles: ∠1 + ∠2 = 180°

Theorems

Law of Sines
Linear Pair Theorem

Suitable Grade Level

Grades 8-10