Math Problem Statement

Solution

To find the projection of vector u\mathbf{u} onto vector v\mathbf{v}, we use the formula:

projvu=uvvvv\text{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}

where:

  • u=[530]\mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ 0 \end{bmatrix}
  • v=[24]\mathbf{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}

First, we need to calculate the dot product uv\mathbf{u} \cdot \mathbf{v} and vv\mathbf{v} \cdot \mathbf{v}.

Step 1: Compute the dot products

  1. Dot product uv\mathbf{u} \cdot \mathbf{v}:

Since u\mathbf{u} and v\mathbf{v} have different dimensions (3 and 2 components respectively), it is not possible to compute the projection directly. Instead, we need to ensure that both vectors have the same dimension or clarify the dimensions needed.

Can you please confirm the correct dimensions for u\mathbf{u} and v\mathbf{v}?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Vector Projection

Formulas

Vector projection formula: \( \text{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \)

Theorems

-

Suitable Grade Level

Advanced High School