Math Problem Statement

kerjakan soal ini

Suatu komoditi tertentu memiliki fungsi permintaan yang ditunjukkan oleh 2P + 2Q = 30 dan fungsi penawaran P - 3 = (1/2)Q. Terhadap produk ini pemerintah mengenakan pajak sebesar Rp 3 per unit. Hitunglah berapa besar penerimaan pajak total oleh pemerintah?

Solution

To solve this problem, let's proceed by analyzing the demand and supply functions and determining the tax revenue.

Given Information

  1. Demand Function: 2P+2Q=302P + 2Q = 30
  2. Supply Function: P3=12QP - 3 = \frac{1}{2}Q
  3. Tax: The government imposes a tax of Rp 3 per unit.

Steps to Solve

1. Simplify the Demand and Supply Functions

  • Rewrite the demand function to express QQ in terms of PP: 2P+2Q=30P+Q=15Q=15P2P + 2Q = 30 \Rightarrow P + Q = 15 \Rightarrow Q = 15 - P
  • Rewrite the supply function to express QQ in terms of PP: P3=12QQ=2(P3)Q=2P6P - 3 = \frac{1}{2}Q \Rightarrow Q = 2(P - 3) \Rightarrow Q = 2P - 6

2. Determine Equilibrium Without Tax

  • Set the demand and supply equations equal to each other to find the equilibrium price and quantity: 15P=2P615 - P = 2P - 6 21=3PP=721 = 3P \Rightarrow P = 7 Substitute P=7P = 7 back into one of the equations to find QQ: Q=157=8Q = 15 - 7 = 8
  • Therefore, the equilibrium price without tax is P=7P = 7 and equilibrium quantity is Q=8Q = 8.

3. Determine New Equilibrium with Tax

  • When a tax of Rp 3 is imposed, the supply function shifts vertically upwards by 3 units. The new supply price becomes P+3P + 3.
  • The adjusted supply equation is: P+33=12QP+3=12QP + 3 - 3 = \frac{1}{2}Q \Rightarrow P + 3 = \frac{1}{2}Q Rewrite this

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Linear Equations
Equilibrium Analysis
Tax Revenue

Formulas

Demand function: 2P + 2Q = 30
Supply function: P - 3 = (1/2)Q
Equilibrium condition: Demand = Supply
Total tax revenue = Tax per unit × Quantity demanded

Theorems

Equilibrium Analysis
Tax Shift on Supply Curve

Suitable Grade Level

Undergraduate Economics or Advanced High School Mathematics