Math Problem Statement

(a) Berechnen Sie den Gesamtwiderstand Rges der Schaltung. (b) Wie groß sind der Strom I und die Spannung U4? (c) Berechnen Sie die Spannung U5 in Abhängigkeit vom Gesamtwiderstand Rges. Vereinfachen Sie Ihr Ergebnis soweit wie möglich!

(a) Berechnen Sie den Gesamtwiderstand Rges der Schaltung. (b) Wie groß sind der Strom I und die Spannung U4? (c) Berechnen Sie die Spannung U5 in Abhängigkeit vom Gesamtwiderstand Rges. Vereinfachen Sie Ihr Ergebnis soweit wie möglich!

Solution

To answer these questions, let's go step by step, analyzing the circuit and solving each part.

The circuit diagram has four resistors R1R_1, R2R_2, R3R_3, and R4R_4, arranged as follows:

  • R1R_1 and the combination of R2R_2, R3R_3, and R4R_4 are connected in series.
  • R2R_2 and R3R_3 are in parallel, and this combination is in series with R4R_4.

Let's break down each question.

(a) Berechnen Sie den Gesamtwiderstand RgesR_{\text{ges}} der Schaltung.

To find the total resistance RgesR_{\text{ges}}:

  1. Calculate the equivalent resistance of R2R_2 and R3R_3 in parallel: R23=R2R3R2+R3R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3}

  2. Add R23R_{23} and R4R_4 in series: R234=R23+R4R_{234} = R_{23} + R_4

  3. Add R1R_1 and R234R_{234} in series to find the total resistance: Rges=R1+R234R_{\text{ges}} = R_1 + R_{234}

(b) Wie groß sind der Strom II und die Spannung U4U_4?

  1. Calculate the total current II using Ohm's Law: I=U0RgesI = \frac{U_0}{R_{\text{ges}}}

  2. Calculate the voltage U4U_4 across R4R_4. Since R234R_{234} (including R4R_4) is in series with R1R_1, the voltage across R234R_{234} can be found as: U234=IR234U_{234} = I \cdot R_{234} Then, the voltage across R4R_4 specifically is: U4=IR4U_4 = I \cdot R_4

(c) Berechnen Sie die Spannung U5U_5 in Abhängigkeit vom Gesamtwiderstand RgesR_{\text{ges}}. Vereinfachen Sie Ihr Ergebnis soweit wie möglich!

The voltage U5U_5 across the entire parallel section (including R2R_2, R3R_3, and R4R_4) can be expressed in terms of RgesR_{\text{ges}}:

  1. Using the total voltage U0U_0 and RgesR_{\text{ges}}, we have: U5=U0(IR1)U_5 = U_0 - (I \cdot R_1)
  2. Substitute I=U0RgesI = \frac{U_0}{R_{\text{ges}}} into the equation: U5=U0(U0RgesR1)=U0(1R1Rges)U_5 = U_0 - \left(\frac{U_0}{R_{\text{ges}}} \cdot R_1\right) = U_0 \left(1 - \frac{R_1}{R_{\text{ges}}}\right)

This provides U5U_5 in terms of RgesR_{\text{ges}} and U0U_0.


If you provide values for R1R_1, R2R_2, R3R_3, R4R_4, and U0U_0, I can calculate the numerical answers.

Would you like further details, or have any questions?


Here are 5 additional questions that could help expand your understanding of this circuit:

  1. How would the total resistance change if an additional resistor was added in parallel with R2R_2?
  2. What would happen to the current II if the voltage U0U_0 were doubled?
  3. How does the voltage U4U_4 compare with the voltage across R2R_2 or R3R_3?
  4. What is the power dissipated by R4R_4 given the current II?
  5. How would you approach solving this if all resistors were variable?

Tip: In circuits with both series and parallel components, simplify step-by-step by calculating equivalent resistances for parallel parts first, then adding them with series components.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Circuit Analysis
Series and Parallel Resistances
Ohm's Law
Voltage Division

Formulas

R_parallel = (R_2 * R_3) / (R_2 + R_3)
R_total = R_1 + R_parallel + R_4
I = U_0 / R_total
U_4 = I * R_4
U_5 = U_0 * (1 - (R_1 / R_total))

Theorems

Ohm's Law
Voltage Divider Rule

Suitable Grade Level

University Level