Math Problem Statement
After running regression on the sales' data of a chain department store, we get the following model:
y=13.2+6.1x1+0.3x2+1.2Q1−1.7Q2+2.6Q3
where:
y is sales in million dollars
x1 is the store size in 1000 sq ft
x2 is the number of years the store has been open, and
Qi's are dummy variables that is 1 if quarter = i ; and 0 otherwise.
In answering the following questions, pay attention to units of x1 and y, and signs of coefficients. How to solve in excel: What is the expected sales difference between Q2 and Q3? Which quarter is expected to be higher?
Group of answer choices
$900,000, Q2
$4.3 million, Q3
$900,000, Q3
$4.3 million, Q2
Solution
We are given the regression model:
where:
- is the sales in million dollars.
- is the store size in 1000 square feet.
- is the number of years the store has been open.
- are dummy variables representing the quarters (1 for the specified quarter, 0 otherwise).
Step-by-Step Approach:
To calculate the expected sales difference between Q2 and Q3, we need to look at the coefficients associated with these quarters:
- Coefficient for
- Coefficient for
The sales difference between Q2 and Q3 is determined by the difference in their coefficients. The rest of the variables (store size, years open) are not relevant for this comparison since they remain constant across quarters.
Thus, the expected sales difference between Q2 and Q3 is $4.3 million.
Which quarter is expected to be higher?
Since the coefficient for (2.6) is larger than the coefficient for (-1.7), the sales in Q3 are expected to be higher.
Conclusion:
- The expected sales difference between Q2 and Q3 is $4.3 million.
- Q3 is expected to have higher sales.
Thus, the correct answer is:
$4.3 million, Q3.
Would you like detailed steps on how to perform these calculations in Excel?
Here are five questions to extend this topic:
- How does the size of the store () affect sales according to the model?
- What would be the expected sales for a store in Q1?
- How would the regression model change if you added a fifth dummy variable for a new quarter?
- Can this model predict sales for a brand-new store? Why or why not?
- How would negative coefficients for quarters impact sales predictions?
Tip: In regression models, dummy variables allow categorical data (like quarters) to be included as numerical predictors.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Regression
Dummy Variables
Sales Forecasting
Comparison of Regression Coefficients
Formulas
y = 13.2 + 6.1x1 + 0.3x2 + 1.2Q1 − 1.7Q2 + 2.6Q3
Sales Difference = Coefficient of Q3 - Coefficient of Q2
Theorems
Linear Regression Analysis
Dummy Variable Interpretation
Suitable Grade Level
College or Business Math
Related Recommendation
Forecast Quarterly Demand Using Regression Analysis
Forecast Demand Using Regression Equation: Business Statistics Textbook Example
Linear Regression Model and Fit Analysis for Sales Data Over Time
Forecast Sales Using Quadratic Trend Model - Detailed Analysis
Forecasting Demand Using Regression Analysis: Quarterly Data Example