To solve for R5 of f(x)=3x2+8x over the interval [−1,1], we need to compute the Right Riemann Sum with n=5. Here’s a step-by-step outline:
Step 1: Define the Interval
The interval [−1,1] has a length L=1−(−1)=2.
Step 2: Calculate the Width of Each Subinterval
Since we are using 5 subintervals, each subinterval width Δx is:
Δx=52=52
Step 3: Determine the Right Endpoints of Each Subinterval
The right endpoints xi for each subinterval i=1,2,3,4,5 are calculated as follows:
xi=−1+i⋅Δx=−1+i⋅52
Thus, the right endpoints are:
- x1=−1+52=−53
- x2=−1+2⋅52=−51
- x3=−1+3⋅52=51
- x4=−1+4⋅52=53
- x5=−1+5⋅52=1
Step 4: Evaluate f(x) at Each Right Endpoint
Now we plug each xi into f(x)=3x2+8x:
- f(−53)=3(−53)2+8(−53)
- f(−51)=3(−51)2+8(−51)
- f(51)=3(51)2+8(51)
- f(53)=3(53)2+8(53)
- f(1)=3(1)2+8(1)
Let's evaluate each:
- f(−53)=3⋅259−524=2527−25120=−2593
- f(−51)=3⋅251−58=253−2540=−2537
- f(51)=3⋅251+58=253+2540=2543
- f(53)=3⋅259+524=2527+25120=25147
- f(1)=3⋅1+8=3+8=11
Step 5: Calculate the Right Riemann Sum R5
The Right Riemann Sum R5 is given by:
R5=Δx⋅∑i=15f(xi)
Substitute Δx=52 and the calculated f(xi) values:
R5=52(−2593−2537+2543+25147+11)
Convert 11 to 25275:
R5=52(−2593−2537+2543+25147+25275)
R5=52⋅25335=5⋅252⋅335=125670=25134
Final Answer
R5=25134
Would you like more details or have any questions?
Relative Questions:
- How would the answer change if we used a Left Riemann Sum instead?
- What is the effect of increasing n on the accuracy of the Riemann sum?
- How can we compute the Midpoint Riemann Sum for this function over the same interval?
- How does using Riemann sums approximate the area under the curve?
- What is the exact integral value of f(x)=3x2+8x over [−1,1]?
Tip: For symmetric functions, consider whether you can simplify calculations by observing symmetry over intervals like [−a,a].