Math Problem Statement

Calculate R5 for f(x) = 3x^2 + 8x over [-1, 1].

Solution

To solve for R5R_5 of f(x)=3x2+8xf(x) = 3x^2 + 8x over the interval [1,1][-1, 1], we need to compute the Right Riemann Sum with n=5n = 5. Here’s a step-by-step outline:

Step 1: Define the Interval

The interval [1,1][-1, 1] has a length L=1(1)=2L = 1 - (-1) = 2.

Step 2: Calculate the Width of Each Subinterval

Since we are using 5 subintervals, each subinterval width Δx\Delta x is: Δx=25=25\Delta x = \frac{2}{5} = \frac{2}{5}

Step 3: Determine the Right Endpoints of Each Subinterval

The right endpoints xix_i for each subinterval i=1,2,3,4,5i = 1, 2, 3, 4, 5 are calculated as follows: xi=1+iΔx=1+i25x_i = -1 + i \cdot \Delta x = -1 + i \cdot \frac{2}{5} Thus, the right endpoints are:

  1. x1=1+25=35x_1 = -1 + \frac{2}{5} = -\frac{3}{5}
  2. x2=1+225=15x_2 = -1 + 2 \cdot \frac{2}{5} = -\frac{1}{5}
  3. x3=1+325=15x_3 = -1 + 3 \cdot \frac{2}{5} = \frac{1}{5}
  4. x4=1+425=35x_4 = -1 + 4 \cdot \frac{2}{5} = \frac{3}{5}
  5. x5=1+525=1x_5 = -1 + 5 \cdot \frac{2}{5} = 1

Step 4: Evaluate f(x)f(x) at Each Right Endpoint

Now we plug each xix_i into f(x)=3x2+8xf(x) = 3x^2 + 8x:

  1. f(35)=3(35)2+8(35)f\left(-\frac{3}{5}\right) = 3\left(-\frac{3}{5}\right)^2 + 8\left(-\frac{3}{5}\right)
  2. f(15)=3(15)2+8(15)f\left(-\frac{1}{5}\right) = 3\left(-\frac{1}{5}\right)^2 + 8\left(-\frac{1}{5}\right)
  3. f(15)=3(15)2+8(15)f\left(\frac{1}{5}\right) = 3\left(\frac{1}{5}\right)^2 + 8\left(\frac{1}{5}\right)
  4. f(35)=3(35)2+8(35)f\left(\frac{3}{5}\right) = 3\left(\frac{3}{5}\right)^2 + 8\left(\frac{3}{5}\right)
  5. f(1)=3(1)2+8(1)f(1) = 3(1)^2 + 8(1)

Let's evaluate each:

  1. f(35)=3925245=272512025=9325f\left(-\frac{3}{5}\right) = 3 \cdot \frac{9}{25} - \frac{24}{5} = \frac{27}{25} - \frac{120}{25} = -\frac{93}{25}
  2. f(15)=312585=3254025=3725f\left(-\frac{1}{5}\right) = 3 \cdot \frac{1}{25} - \frac{8}{5} = \frac{3}{25} - \frac{40}{25} = -\frac{37}{25}
  3. f(15)=3125+85=325+4025=4325f\left(\frac{1}{5}\right) = 3 \cdot \frac{1}{25} + \frac{8}{5} = \frac{3}{25} + \frac{40}{25} = \frac{43}{25}
  4. f(35)=3925+245=2725+12025=14725f\left(\frac{3}{5}\right) = 3 \cdot \frac{9}{25} + \frac{24}{5} = \frac{27}{25} + \frac{120}{25} = \frac{147}{25}
  5. f(1)=31+8=3+8=11f(1) = 3 \cdot 1 + 8 = 3 + 8 = 11

Step 5: Calculate the Right Riemann Sum R5R_5

The Right Riemann Sum R5R_5 is given by: R5=Δxi=15f(xi)R_5 = \Delta x \cdot \sum_{i=1}^{5} f(x_i) Substitute Δx=25\Delta x = \frac{2}{5} and the calculated f(xi)f(x_i) values: R5=25(93253725+4325+14725+11)R_5 = \frac{2}{5} \left( -\frac{93}{25} - \frac{37}{25} + \frac{43}{25} + \frac{147}{25} + 11 \right)

Convert 11 to 27525\frac{275}{25}: R5=25(93253725+4325+14725+27525)R_5 = \frac{2}{5} \left( -\frac{93}{25} - \frac{37}{25} + \frac{43}{25} + \frac{147}{25} + \frac{275}{25} \right) R5=2533525=2335525=670125=13425R_5 = \frac{2}{5} \cdot \frac{335}{25} = \frac{2 \cdot 335}{5 \cdot 25} = \frac{670}{125} = \frac{134}{25}

Final Answer

R5=13425R_5 = \frac{134}{25}

Would you like more details or have any questions?


Relative Questions:

  1. How would the answer change if we used a Left Riemann Sum instead?
  2. What is the effect of increasing nn on the accuracy of the Riemann sum?
  3. How can we compute the Midpoint Riemann Sum for this function over the same interval?
  4. How does using Riemann sums approximate the area under the curve?
  5. What is the exact integral value of f(x)=3x2+8xf(x) = 3x^2 + 8x over [1,1][-1, 1]?

Tip: For symmetric functions, consider whether you can simplify calculations by observing symmetry over intervals like [a,a][-a, a].

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Riemann Sum
Right Riemann Sum
Polynomial Functions

Formulas

Right Riemann Sum: R_n = Δx * Σ f(x_i)
Subinterval Width: Δx = (b - a) / n

Theorems

Riemann Sum Approximation

Suitable Grade Level

Undergraduate Calculus