Math Problem Statement

Four vectors show the direction of forms acting on a body. Determine the magnitude and direction of the resultant if: f1= 10N, 45° North of East and F2 = 10° South of East and F3= 6N, East and last F4= 6N,20° South of west. Use the scale of 0.5cm= 1N

Solution

To solve this problem, we'll break down the forces into their components, sum them up to find the resultant force, and then determine the magnitude and direction of the resultant. Let's go step by step.

Step 1: Break Down the Forces into Components

Each force vector can be broken down into its horizontal (x-axis) and vertical (y-axis) components.

  1. F1=10N,45F_1 = 10 \, \text{N}, 45^\circ North of East:

    • F1x=10×cos(45)F_{1x} = 10 \times \cos(45^\circ)
    • F1y=10×sin(45)F_{1y} = 10 \times \sin(45^\circ)
  2. F2=10N,10F_2 = 10 \, \text{N}, 10^\circ South of East:

    • F2x=10×cos(10)F_{2x} = 10 \times \cos(10^\circ)
    • F2y=10×sin(10)F_{2y} = -10 \times \sin(10^\circ) (Negative because it's South)
  3. F3=6N,EastF_3 = 6 \, \text{N}, \text{East}:

    • F3x=6NF_{3x} = 6 \, \text{N}
    • F3y=0F_{3y} = 0 (No vertical component)
  4. F4=6N,20F_4 = 6 \, \text{N}, 20^\circ South of West:

    • F4x=6×cos(20)F_{4x} = -6 \times \cos(20^\circ) (Negative because it's West)
    • F4y=6×sin(20)F_{4y} = -6 \times \sin(20^\circ) (Negative because it's South)

Step 2: Calculate the Components

  1. F1F_1 Components:

    • F1x=10×cos(45)=10×22=7.07NF_{1x} = 10 \times \cos(45^\circ) = 10 \times \frac{\sqrt{2}}{2} = 7.07 \, \text{N}
    • F1y=10×sin(45)=7.07NF_{1y} = 10 \times \sin(45^\circ) = 7.07 \, \text{N}
  2. F2F_2 Components:

    • F2x=10×cos(10)=9.85NF_{2x} = 10 \times \cos(10^\circ) = 9.85 \, \text{N}
    • F2y=10×sin(10)=1.74NF_{2y} = -10 \times \sin(10^\circ) = -1.74 \, \text{N}
  3. F3F_3 Components:

    • F3x=6NF_{3x} = 6 \, \text{N}
    • F3y=0NF_{3y} = 0 \, \text{N}
  4. F4F_4 Components:

    • F4x=6×cos(20)=5.64NF_{4x} = -6 \times \cos(20^\circ) = -5.64 \, \text{N}
    • F4y=6×sin(20)=2.05NF_{4y} = -6 \times \sin(20^\circ) = -2.05 \, \text{N}

Step 3: Sum the Components

Now, sum the x and y components separately to find the resultant components.

  • Resultant xx-component: Rx=F1x+F2x+F3x+F4x=7.07+9.85+65.64=17.28NR_x = F_{1x} + F_{2x} + F_{3x} + F_{4x} = 7.07 + 9.85 + 6 - 5.64 = 17.28 \, \text{N}

  • Resultant yy-component: Ry=F1y+F2y+F3y+F4y=7.071.74+02.05=3.28NR_y = F_{1y} + F_{2y} + F_{3y} + F_{4y} = 7.07 - 1.74 + 0 - 2.05 = 3.28 \, \text{N}

Step 4: Calculate the Magnitude of

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Components
Resultant Force
Trigonometry

Formulas

Vector components using trigonometry

Theorems

-

Suitable Grade Level

College Level