Math Problem Statement

hacelo

Un tubo en forma de U tiene una sección de 1.5 cm² y contiene inicialmente 50 cm³ de Hg. A un brazo se le agrega un líquido desconocido y se observa que el desnivel de Hg en los brazos es de 2.75 cm. Determine la densidad relativa del líquido desconocido (densidad relativa del mercurio 13.6).

Solution

To solve this problem, let's go through the details step-by-step.

  1. Problem Analysis:

    • We have a U-shaped tube with a cross-sectional area A=1.5cm2A = 1.5 \, \text{cm}^2.
    • Initially, it contains 50 cm³ of mercury (Hg), which means that the height of mercury can be determined by: hHg initial=volume of Hgarea=50cm31.5cm2=33.33cmh_{\text{Hg initial}} = \frac{\text{volume of Hg}}{\text{area}} = \frac{50 \, \text{cm}^3}{1.5 \, \text{cm}^2} = 33.33 \, \text{cm}
    • A new, unknown liquid is added to one arm of the U-tube, causing the mercury to shift by 2.75 cm.
    • The relative density of mercury (Hg) is given as 13.613.6.
  2. Goal:

    • Determine the relative density (specific gravity) of the unknown liquid.
  3. Method:

    • The difference in height on both sides of the mercury (2.75cm2.75 \, \text{cm}) gives a clue to the pressure exerted by the unknown liquid.
    • In a U-tube in equilibrium, the pressure exerted by the height of the unknown liquid should equal the pressure difference caused by the displaced mercury.
  4. Pressure Equilibrium:

    • Let hunknownh_{\text{unknown}} be the height of the unknown liquid causing this displacement.
    • The pressure due to the unknown liquid on one side is given by: Punknown=ρunknownghunknownP_{\text{unknown}} = \rho_{\text{unknown}} \cdot g \cdot h_{\text{unknown}}
    • The pressure due to the displaced mercury height (2.75 cm) on the other side is: PHg=ρHgg2.75cmP_{\text{Hg}} = \rho_{\text{Hg}} \cdot g \cdot 2.75 \, \text{cm}
    • Since the system is in equilibrium: ρunknownghunknown=ρHgg2.75cm\rho_{\text{unknown}} \cdot g \cdot h_{\text{unknown}} = \rho_{\text{Hg}} \cdot g \cdot 2.75 \, \text{cm}
  5. Calculations:

    • Let’s express the density of mercury in terms of its relative density and the unknown liquid density.
    • Since the relative density of mercury is 13.613.6: ρHg=13.6ρwater\rho_{\text{Hg}} = 13.6 \cdot \rho_{\text{water}}
    • Rearranging the equilibrium equation, we get: ρunknown=ρHg2.75hunknown\rho_{\text{unknown}} = \frac{\rho_{\text{Hg}} \cdot 2.75}{h_{\text{unknown}}}

    By solving

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fluid Mechanics
Pressure Equilibrium
Density
Relative Density

Formulas

h_{Hg} = \frac{\text{volume of Hg}}{\text{area}}
P_{\text{unknown}} = \rho_{\text{unknown}} \cdot g \cdot h_{\text{unknown}}
P_{\text{Hg}} = \rho_{\text{Hg}} \cdot g \cdot 2.75 \text{ cm}
\rho_{\text{unknown}} = \frac{\rho_{\text{Hg}} \cdot 2.75}{h_{\text{unknown}}}

Theorems

Pressure Equilibrium in Fluids

Suitable Grade Level

Grades 11-12