Math Problem Statement

Un tubo en forma de U tiene una sección de 1.5 cm² y contiene inicialmente 50 cm³ de Hg. A un brazo se le agrega un líquido desconocido y se observa que el desnivel de Hg en los brazos es de 2.75 cm. Determine la densidad relativa del líquido desconocido (densidad relativa del mercurio 13.6).

Solution

The problem involves a U-shaped tube with mercury and a liquid of unknown density. Here's the step-by-step solution:

Data:

  • Cross-sectional area: A=1.5cm2A = 1.5 \, \text{cm}^2
  • Volume of mercury: VHg=50cm3V_{\text{Hg}} = 50 \, \text{cm}^3
  • Density of mercury: ρHg=13.6g/cm3\rho_{\text{Hg}} = 13.6 \, \text{g/cm}^3 (relative density)
  • Height difference of mercury: hHg=2.75cmh_{\text{Hg}} = 2.75 \, \text{cm}
  • A liquid of unknown density is added.

Step-by-Step Solution:

  1. Height of Mercury Column in the Tube Before Adding the Liquid:

    • Mercury initially fills both sides symmetrically.
    • The height of mercury in the tube is: hHg,initial=VHgA=501.5=33.33cmh_{\text{Hg,initial}} = \frac{V_{\text{Hg}}}{A} = \frac{50}{1.5} = 33.33 \, \text{cm}
  2. Effect of the Added Liquid:

    • When the unknown liquid is added, it pushes mercury down on one side.
    • The height difference in mercury columns is hHg=2.75cmh_{\text{Hg}} = 2.75 \, \text{cm}.
  3. Pressure Balance in the U-Tube:

    • At equilibrium, the pressures at the same horizontal level in both arms are equal.
    • Pressure due to the unknown liquid: Pliquid=ρliquidghliquidP_{\text{liquid}} = \rho_{\text{liquid}} g h_{\text{liquid}}
    • Pressure due to displaced mercury: PHg=ρHgghHgP_{\text{Hg}} = \rho_{\text{Hg}} g h_{\text{Hg}}

    Since the pressures are equal: ρliquidghliquid=ρHgghHg\rho_{\text{liquid}} g h_{\text{liquid}} = \rho_{\text{Hg}} g h_{\text{Hg}}

    Simplify by canceling gg: ρliquidhliquid=ρHghHg\rho_{\text{liquid}} h_{\text{liquid}} = \rho_{\text{Hg}} h_{\text{Hg}}

  4. Determine the Height of the Liquid Column:

    • The height of the liquid column added is equal to the height of mercury displaced on the other side: hliquid=hHg=2.75cmh_{\text{liquid}} = h_{\text{Hg}} = 2.75 \, \text{cm}
  5. Solve for Relative Density:

    • Substitute the known values: ρliquid=ρHghHghliquid\rho_{\text{liquid}} = \rho_{\text{Hg}} \frac{h_{\text{Hg}}}{h_{\text{liquid}}}

    • With ρHg=13.6\rho_{\text{Hg}} = 13.6: ρliquid=13.62.752.75=13.6\rho_{\text{liquid}} = 13.6 \cdot \frac{2.75}{2.75} = 13.6

Final Answer:

The relative density of the unknown liquid is approximately 1.0 (water's density).

Would you like further clarification or a breakdown of another part? Let me know!


Related Questions:

  1. How does the cross-sectional area affect the equilibrium in a U-tube?
  2. Why is the pressure at the same horizontal level in a fluid always equal?
  3. What role does the density of mercury play in solving this problem?
  4. How would the solution change if the liquid added had a higher density?
  5. Can you calculate the absolute density of the unknown liquid in g/cm3\text{g/cm}^3?

Tip: Always set up the pressure balance equation carefully when solving fluid dynamics problems involving equilibrium.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fluid Statics
Pressure Equilibrium
Relative Density

Formulas

P = ρgh
ρ_liquid * h_liquid = ρ_Hg * h_Hg
h_Hg_initial = V / A

Theorems

Principle of Hydrostatic Equilibrium

Suitable Grade Level

Grades 10-12