Math Problem Statement

Consider a symmetric matrix A=[[1 2][2 1]] . What is the gradient of f(x)=Tr(A^2x) , where A∈R2×2 and x∈R2×2 , with respect to x ?

Solution

To find the gradient of the function f(x)=Tr(A2x)f(x) = \text{Tr}(A^2x) with respect to the matrix xx, let's go through the problem step by step.

Given:

  • AA is a symmetric 2×22 \times 2 matrix: A=(1221)A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.
  • xx is a 2×22 \times 2 matrix.
  • f(x)=Tr(A2x)f(x) = \text{Tr}(A^2x), where Tr(M)\text{Tr}(M) denotes the trace of matrix MM.

Step 1: Compute A2A^2

First, calculate A2A^2:

A2=AA=(1221)(1221)A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}

A2=(11+2212+2121+1222+11)=(5445)A^2 = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 2 & 1 \cdot 2 + 2 \cdot 1 \\ 2 \cdot 1 + 1 \cdot 2 & 2 \cdot 2 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}

Step 2: Express f(x)f(x)

The function f(x)f(x) can be rewritten as:

f(x)=Tr(A2x)=Tr((5445)(x11x12x21x22))f(x) = \text{Tr}(A^2x) = \text{Tr}\left(\begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}\right)

The product A2xA^2 x is:

A2x=(5445)(x11x12x21x22)=(5x11+4x215x12+4x224x11+5x214x12+5x22)A^2 x = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} 5x_{11} + 4x_{21} & 5x_{12} + 4x_{22} \\ 4x_{11} + 5x_{21} & 4x_{12} + 5x_{22} \end{pmatrix}

Thus,

f(x)=Tr((5x11+4x215x12+4x224x11+5x214x12+5x22))=(5x11+4x21)+(4x12+5x22)f(x) = \text{Tr}\left(\begin{pmatrix} 5x_{11} + 4x_{21} & 5x_{12} + 4x_{22} \\ 4x_{11} + 5x_{21} & 4x_{12} + 5x_{22} \end{pmatrix}\right) = (5x_{11} + 4x_{21}) + (4x_{12} + 5x_{22})

f(x)=5x11+4x21+4x12+5x22f(x) = 5x_{11} + 4x_{21} + 4x_{12} + 5x_{22}

Step 3: Compute the gradient xf(x)\nabla_x f(x)

The gradient of f(x)f(x) with respect to xx is the matrix of partial derivatives:

xf(x)=f(x)x=(f(x)x11f(x)x12f(x)x21f(x)x22)\nabla_x f(x) = \frac{\partial f(x)}{\partial x} = \begin{pmatrix} \frac{\partial f(x)}{\partial x_{11}} & \frac{\partial f(x)}{\partial x_{12}} \\ \frac{\partial f(x)}{\partial x_{21}} & \frac{\partial f(x)}{\partial x_{22}} \end{pmatrix}

Computing each partial derivative:

f(x)x11=5,f(x)x12=4\frac{\partial f(x)}{\partial x_{11}} = 5, \quad \frac{\partial f(x)}{\partial x_{12}} = 4 f(x)x21=4,f(x)x22=5\frac{\partial f(x)}{\partial x_{21}} = 4, \quad \frac{\partial f(x)}{\partial x_{22}} = 5

Therefore, the gradient is:

xf(x)=(5445)\nabla_x f(x) = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}

Final Answer:

The gradient of f(x)=Tr(A2x)f(x) = \text{Tr}(A^2 x) with respect to xx is:

xf(x)=(5445)\nabla_x f(x) = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}

Do you want details or have any questions?


Here are five relative questions for further exploration:

  1. How would the gradient change if AA were not symmetric?
  2. What happens to the gradient if the matrix xx is constrained to be symmetric?
  3. How does the trace function affect the differentiation process when applied to different types of matrices?
  4. Can you generalize this result for larger symmetric matrices AA?
  5. How does the gradient xf(x)\nabla_x f(x) relate to the optimization of f(x)f(x)?

Tip: When working with matrix calculus, understanding the role of the trace operator and the properties of matrices involved can greatly simplify gradient calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Calculus
Trace of a Matrix
Gradient

Formulas

Trace of a Matrix
Gradient of a Matrix Function

Theorems

-

Suitable Grade Level

Advanced Mathematics