Math Problem Statement

Given: f(x) = x^3 - 2x - 3 and g(x) = 3x - 2. Find: (f/g)(2).

Solution

The problem asks us to compute (fg)(2)\left( \frac{f}{g} \right)(2), where:

f(x)=x32x3andg(x)=3x2.f(x) = x^3 - 2x - 3 \quad \text{and} \quad g(x) = 3x - 2.

The function fg(x)\frac{f}{g}(x) is defined as:

fg(x)=f(x)g(x).\frac{f}{g}(x) = \frac{f(x)}{g(x)}.

So, to compute (fg)(2)\left( \frac{f}{g} \right)(2), we need to evaluate f(2)f(2) and g(2)g(2), then divide the results:

Step 1: Compute f(2)f(2)

f(2)=232(2)3=843=1.f(2) = 2^3 - 2(2) - 3 = 8 - 4 - 3 = 1.

Step 2: Compute g(2)g(2)

g(2)=3(2)2=62=4.g(2) = 3(2) - 2 = 6 - 2 = 4.

Step 3: Compute f(2)g(2)\frac{f(2)}{g(2)}

f(2)g(2)=14.\frac{f(2)}{g(2)} = \frac{1}{4}.

Thus, (fg)(2)=14\left( \frac{f}{g} \right)(2) = \frac{1}{4}.

Let me know if you need more details or have any other questions!

Here are 5 related questions for further practice:

  1. What is f(x)f'(x) for f(x)=x32x3f(x) = x^3 - 2x - 3?
  2. Find (fg)(2)\left( \frac{f}{g} \right)'(2) for the given functions.
  3. Compute (fg)(1)\left( \frac{f}{g} \right)(-1) for the given functions.
  4. If h(x)=f(x)×g(x)h(x) = f(x) \times g(x), what is h(2)h(2)?
  5. Determine the zeroes of f(x)=x32x3f(x) = x^3 - 2x - 3.

Tip: Always evaluate functions step by step to avoid confusion with algebraic manipulations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomial Functions
Rational Functions

Formulas

f(x) = x^3 - 2x - 3
g(x) = 3x - 2
(f/g)(x) = f(x) / g(x)

Theorems

Function Composition

Suitable Grade Level

High School