Math Problem Statement

Jika matriks A=( 2 1 0 ) dan matriks B=(−1 2 −4) jika matrik C=AB, maka nilai det C adalah …

Solution

To solve the problem, we need to calculate the determinant of the matrix C=ABC = AB, where:

A=(210)andB=(124).A = \begin{pmatrix} 2 & 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix}.

Step 1: Determine if ABAB is valid

Matrix AA has dimensions 1×31 \times 3, and BB has dimensions 3×13 \times 1. The product ABAB is valid and will result in a 1×11 \times 1 matrix.


Step 2: Compute ABAB

The product of AA and BB is computed as follows: C=AB=(210)(124).C = AB = \begin{pmatrix} 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix}.

Multiply row-wise: C=((2)(1)+(1)(2)+(0)(4))C = \left( (2)(-1) + (1)(2) + (0)(-4) \right) C=(2+2+0)C = \left( -2 + 2 + 0 \right) C=0C = 0

Thus, CC is a 1×11 \times 1 matrix: C=(0).C = \begin{pmatrix} 0 \end{pmatrix}.


Step 3: Determine the determinant of CC

The determinant of a 1×11 \times 1 matrix is simply the value of the single element in the matrix. Therefore: det(C)=0\text{det}(C) = 0


Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Determinants

Formulas

Matrix multiplication: C = AB
Determinant of a 1x1 matrix: det(C) = C[1,1]

Theorems

Properties of Determinants

Suitable Grade Level

Grades 10-12