Math Problem Statement

If θ = 3π/4, find the exact value of each expression below. (a) cos(-θ) (b) cos^2(θ) (c) cos(2θ)

Solution

Let's solve each part step by step.

Given: θ=3π4\theta = \frac{3\pi}{4}

  1. (a) cos(θ)\cos(-\theta)

    Using the even property of the cosine function, cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta). So: cos(3π4)=cos(3π4)\cos\left(-\frac{3\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right) The value of cos(3π4)=22\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}.

    Therefore, cos(θ)=22\cos(-\theta) = -\frac{\sqrt{2}}{2}.

  2. (b) cos2θ\cos^2 \theta

    cos2θ\cos^2 \theta means (cosθ)2(\cos \theta)^2. cos(3π4)=22\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2} So, cos2θ=(22)2=24=12\cos^2 \theta = \left(-\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4} = \frac{1}{2}

  3. (c) cos2θ\cos 2\theta

    Using the double-angle formula, cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta - 1. We already found cos2θ=12\cos^2 \theta = \frac{1}{2}, so: cos2θ=2×121=11=0\cos 2\theta = 2 \times \frac{1}{2} - 1 = 1 - 1 = 0

Final Answers:

  • (a) cos(θ)=22\cos(-\theta) = -\frac{\sqrt{2}}{2}
  • (b) cos2θ=12\cos^2 \theta = \frac{1}{2}
  • (c) cos2θ=0\cos 2\theta = 0

Would you like a more detailed breakdown of each step?

Here are 5 related questions for practice:

  1. What is sin(θ)\sin(-\theta) if θ=3π4\theta = \frac{3\pi}{4}?
  2. Calculate tan(θ)\tan(\theta) for θ=3π4\theta = \frac{3\pi}{4}.
  3. Use the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 to verify cos2θ\cos^2 \theta.
  4. How does the value of cos(2θ)\cos(2\theta) change if θ=π3\theta = \frac{\pi}{3} instead?
  5. What is the value of sec(θ)\sec(\theta) if θ=3π4\theta = \frac{3\pi}{4}?

Tip: For angles like 3π4\frac{3\pi}{4}, remember they fall in the second quadrant, where cosine values are negative.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Properties
Cosine Function
Double-Angle Identities

Formulas

cos(-θ) = cos(θ)
cos^2(θ) = (cos(θ))^2
cos(2θ) = 2cos^2(θ) - 1

Theorems

Double-Angle Theorem
Cosine Function Properties

Suitable Grade Level

Grades 10-12