Math Problem Statement

Sebuah peti kayu bermassa 60 kg didorong oleh seseorang dengan gaya 800 N ke atas sebuah truk menggunakan papan yang disandarkan membentuk bidang miring. Ketinggian bak truk tempat papan bersandar adalah 2 m dan panjang papan yang digunakan adalah 2,5 m. Jika peti bergerak ke atas dengan percepatan 2 m/s^2 dan g=10 m/s^2 maka tentukan koefisien gesek kinetis antara peti kayu dengan papan.

Solution

Given this physics problem, let's go through the calculations step by step to determine the coefficient of kinetic friction between the wooden crate and the inclined plane.

Problem Analysis

We have:

  • Mass of the crate, m=60kgm = 60 \, \text{kg}
  • Applied force, F=800NF = 800 \, \text{N}
  • Incline height, h=2mh = 2 \, \text{m}
  • Length of the incline, L=2.5mL = 2.5 \, \text{m}
  • Acceleration of the crate, a=2m/s2a = 2 \, \text{m/s}^2
  • Gravitational acceleration, g=10m/s2g = 10 \, \text{m/s}^2

We are tasked with finding the coefficient of kinetic friction μk\mu_k.

Step 1: Calculate the Inclination Angle

The incline angle θ\theta can be determined from the height and the length of the incline using trigonometry: sinθ=hL=22.5=0.8\sin \theta = \frac{h}{L} = \frac{2}{2.5} = 0.8 θ=arcsin(0.8)\theta = \arcsin(0.8)

Step 2: Resolve Forces along the Incline

The forces acting on the crate along the inclined plane are:

  1. The gravitational component along the incline: Fgravity=mgsinθF_{\text{gravity}} = mg \sin \theta
  2. The applied force F=800NF = 800 \, \text{N}
  3. The frictional force Ffriction=μkNF_{\text{friction}} = \mu_k N, where NN is the normal force.

Step 3: Calculate the Normal Force

The normal force NN is given by: N=mgcosθN = mg \cos \theta

Step 4: Apply Newton's Second Law along the Incline

Using Newton's second law, we get: FFgravityFfriction=maF - F_{\text{gravity}} - F_{\text{friction}} = ma Substituting in the expressions: 800(mgsinθ)(μkmgcosθ)=ma800 - (mg \sin \theta) - (\mu_k \cdot mg \cos \theta) = ma

Step 5: Solve for μk\mu_k

Isolating μk\mu_k, we have: μk=Fmgsinθmamgcosθ\mu_k = \frac{F - mg \sin \theta - ma}{mg \cos \theta}

Let’s substitute the known values and calculate μk\mu_k:

  1. mg=60×10=600Nmg = 60 \times 10 = 600 \, \text{N}
  2. Using sinθ=0.8\sin \theta = 0.8 and cosθ=10.82=0.6\cos \theta = \sqrt{1 - 0.8^2} = 0.6
  3. Plugging these values into the formula for μk\mu_k:

μk=800600×0.860×2600×0.6\mu_k = \frac{800 - 600 \times 0.8 - 60 \times 2}{600 \times 0.6}

Calculating each term individually:

  • 600×0.8=480600 \times 0.8 = 480
  • 60×2=12060 \times 2 = 120
  • 600×0.6=360600 \times 0.6 = 360

So, μk=800480120360=200360=590.56\mu_k = \frac{800 - 480 - 120}{360} = \frac{200}{360} = \frac{5}{9} \approx 0.56

Final Answer

The coefficient of kinetic friction μk0.56\mu_k \approx 0.56.

Would you like further details on any of these steps or have additional questions?


Here are 5 related questions for practice:

  1. How would the coefficient of kinetic friction change if the incline length increased?
  2. What would be the effect of a larger applied force on the acceleration?
  3. How would you calculate the normal force if the incline angle was unknown?
  4. What is the role of the frictional force in this problem?
  5. How would the solution change if the crate moved down the incline instead?

Tip: When solving physics problems, always break down forces along and perpendicular to the incline to simplify calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Physics
Newton's Second Law
Forces on an Inclined Plane

Formulas

sin(θ) = h / L
Newton's second law: F_net = ma
F_friction = μ_k * N
N = mg * cos(θ)

Theorems

Newton's Second Law

Suitable Grade Level

Grades 11-12